The accuracy and interpretability of artificial intelligence (AI) are crucial for the advancement of optical coherence tomography (OCT) image detection, as it can greatly reduce the manual labor required by clinicians. By prioritizing these aspects d...
AIMS: This study aims to develop an advanced model for the classification of Diabetic Macular Edema (DME) using deep learning techniques. Specifically, the objective is to introduce a novel architecture, SSCSAC-Net, that leverages self-supervised lea...
Medical & biological engineering & computing
38684593
Diabetic retinopathy (DR) and diabetic macular edema (DME) are both serious eye conditions associated with diabetes and if left untreated, and they can lead to permanent blindness. Traditional methods for screening these conditions rely on manual ima...
Optical Coherence Tomography (OCT) is widely recognized as the leading modality for assessing ocular retinal diseases, playing a crucial role in diagnosing retinopathy while maintaining a non-invasive modality. The increasing volume of OCT images und...
Optical coherence tomography (OCT) is a non-invasive imaging technique with extensive clinical applications in ophthalmology. OCT enables the visualization of the retinal layers, playing a vital role in the early detection and monitoring of retinal d...
To assess the feasibility of code-free deep learning (CFDL) platforms in the prediction of binary outcomes from fundus images in ophthalmology, evaluating two distinct online-based platforms (Google Vertex and Amazon Rekognition), and two distinct da...
Cystoid macular edema (CME) is a sight-threatening condition often associated with inflammatory and diabetic diseases. Early detection is crucial to prevent irreversible vision loss. Artificial intelligence (AI) has shown promise in automating CME di...
BACKGROUND/OBJECTIVES: Anti-VEGF treatment response in DMO has been measured by changes in the central subfield thickness (CST) and best visual acuity (BVA) outcomes at 3 months after initial treatment, termed early or limited early response (ER/LER)...