AIMC Topic: Melanoma

Clear Filters Showing 241 to 250 of 348 articles

Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports on 25-2...

Automated identification of malignancy in whole-slide pathological images: identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning.

The British journal of ophthalmology
BACKGROUND/AIMS: To develop a deep learning system (DLS) that can automatically detect malignant melanoma (MM) in the eyelid from histopathological sections with colossal information density.

The Application of Deep Learning in the Risk Grading of Skin Tumors for Patients Using Clinical Images.

Journal of medical systems
According to diagnostic criteria, skin tumors can be divided into three categories: benign, low degree and high degree malignancy. For high degree malignant skin tumors, if not detected in time, they can do serious harm to patients' health. However, ...

Melanoma Detection by Means of Multiple Instance Learning.

Interdisciplinary sciences, computational life sciences
We present an application to melanoma detection of a multiple instance learning (MIL) approach, whose objective, in the binary case, is to discriminate between positive and negative sets of items. In the MIL terminology these sets are called bags and...

Detection of Skin Cancer Using SVM, Random Forest and kNN Classifiers.

Journal of medical systems
Most common and deadly type of cancer is Skin cancer. The destructive kind of cancers in skin is Melanoma as well as it can be identified at the initial stage and can be cured completely. For the diagnosis of melanoma, the identification of the melan...

Assessing the effectiveness of artificial intelligence methods for melanoma: A retrospective review.

Journal of the American Academy of Dermatology
BACKGROUND: Artificial intelligence methods for the classification of melanoma have been studied extensively. However, few studies compare these methods under the same standards.

Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions.

PloS one
BACKGROUND: In recent months, multiple publications have demonstrated the use of convolutional neural networks (CNN) to classify images of skin cancer as precisely as dermatologists. However, these CNNs failed to outperform the International Symposiu...