AI Medical Compendium Topic:
Models, Molecular

Clear Filters Showing 481 to 490 of 629 articles

Adaptive local learning in sampling based motion planning for protein folding.

BMC systems biology
BACKGROUND: Simulating protein folding motions is an important problem in computational biology. Motion planning algorithms, such as Probabilistic Roadmap Methods, have been successful in modeling the folding landscape. Probabilistic Roadmap Methods ...

In Silico Calculation of Infinite Dilution Activity Coefficients of Molecular Solutes in Ionic Liquids: Critical Review of Current Methods and New Models Based on Three Machine Learning Algorithms.

Journal of chemical information and modeling
The aim of the paper is to address all the disadvantages of currently available models for calculating infinite dilution activity coefficients (γ(∞)) of molecular solutes in ionic liquids (ILs)-a relevant property from the point of view of many appli...

ADMET Evaluation in Drug Discovery. 16. Predicting hERG Blockers by Combining Multiple Pharmacophores and Machine Learning Approaches.

Molecular pharmaceutics
Blockade of human ether-à-go-go related gene (hERG) channel by compounds may lead to drug-induced QT prolongation, arrhythmia, and Torsades de Pointes (TdP), and therefore reliable prediction of hERG liability in the early stages of drug design is qu...

gDNA-Prot: Predict DNA-binding proteins by employing support vector machine and a novel numerical characterization of protein sequence.

Journal of theoretical biology
DNA-binding proteins are the functional proteins in cells, which play an important role in various essential biological activities. An effective and fast computational method gDNA-Prot is proposed to predict DNA-binding proteins in this paper, which ...

Protease Inhibitors in View of Peptide Substrate Databases.

Journal of chemical information and modeling
Protease substrate profiling has nowadays almost become a routine task for experimentalists, and the knowledge on protease peptide substrates is easily accessible via the MEROPS database. We present a shape-based virtual screening workflow using vROC...

GGIP: Structure and sequence-based GPCR-GPCR interaction pair predictor.

Proteins
G Protein-Coupled Receptors (GPCRs) are important pharmaceutical targets. More than 30% of currently marketed pharmaceutical medicines target GPCRs. Numerous studies have reported that GPCRs function not only as monomers but also as homo- or hetero-d...

Multipolar Electrostatic Energy Prediction for all 20 Natural Amino Acids Using Kriging Machine Learning.

Journal of chemical theory and computation
A machine learning method called kriging is applied to the set of all 20 naturally occurring amino acids. Kriging models are built that predict electrostatic multipole moments for all topological atoms in any amino acid based on molecular geometry on...

Extending (Q)SARs to incorporate proprietary knowledge for regulatory purposes: A case study using aromatic amine mutagenicity.

Regulatory toxicology and pharmacology : RTP
Statistical-based and expert rule-based models built using public domain mutagenicity knowledge and data are routinely used for computational (Q)SAR assessments of pharmaceutical impurities in line with the approach recommended in the ICH M7 guidelin...

Benchmarking Deep Networks for Predicting Residue-Specific Quality of Individual Protein Models in CASP11.

Scientific reports
Quality assessment of a protein model is to predict the absolute or relative quality of a protein model using computational methods before the native structure is available. Single-model methods only need one model as input and can predict the absolu...

UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.

BMC systems biology
BACKGROUND: The conjugation of ubiquitin to a substrate protein (protein ubiquitylation), which involves a sequential process--E1 activation, E2 conjugation and E3 ligation, is crucial to the regulation of protein function and activity in eukaryotes....