AIMC Topic: Molecular Sequence Annotation

Clear Filters Showing 181 to 190 of 260 articles

Elucidating the functional roles of prokaryotic proteins using big data and artificial intelligence.

FEMS microbiology reviews
Annotating protein sequences according to their biological functions is one of the key steps in understanding microbial diversity, metabolic potentials, and evolutionary histories. However, even in the best-studied prokaryotic genomes, not all protei...

CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database.

Nucleic acids research
The Comprehensive Antibiotic Resistance Database (CARD; card.mcmaster.ca) combines the Antibiotic Resistance Ontology (ARO) with curated AMR gene (ARG) sequences and resistance-conferring mutations to provide an informatics framework for annotation a...

Annotation of biologically relevant ligands in UniProtKB using ChEBI.

Bioinformatics (Oxford, England)
MOTIVATION: To provide high quality, computationally tractable annotation of binding sites for biologically relevant (cognate) ligands in UniProtKB using the chemical ontology ChEBI (Chemical Entities of Biological Interest), to better support effort...

E-SNPs&GO: embedding of protein sequence and function improves the annotation of human pathogenic variants.

Bioinformatics (Oxford, England)
MOTIVATION: The advent of massive DNA sequencing technologies is producing a huge number of human single-nucleotide polymorphisms occurring in protein-coding regions and possibly changing their sequences. Discriminating harmful protein variations fro...

Hierarchical deep learning for predicting GO annotations by integrating protein knowledge.

Bioinformatics (Oxford, England)
MOTIVATION: Experimental testing and manual curation are the most precise ways for assigning Gene Ontology (GO) terms describing protein functions. However, they are expensive, time-consuming and cannot cope with the exponential growth of data genera...

TransformerGO: predicting protein-protein interactions by modelling the attention between sets of gene ontology terms.

Bioinformatics (Oxford, England)
MOTIVATION: Protein-protein interactions (PPIs) play a key role in diverse biological processes but only a small subset of the interactions has been experimentally identified. Additionally, high-throughput experimental techniques that detect PPIs are...

SVPath: an accurate pipeline for predicting the pathogenicity of human exon structural variants.

Briefings in bioinformatics
Although there are a large number of structural variations in the chromosomes of each individual, there is a lack of more accurate methods for identifying clinical pathogenic variants. Here, we proposed SVPath, a machine learning-based method to pred...

ECO: the Evidence and Conclusion Ontology, an update for 2022.

Nucleic acids research
The Evidence and Conclusion Ontology (ECO) is a community resource that provides an ontology of terms used to capture the type of evidence that supports biomedical annotations and assertions. Consistent capture of evidence information with ECO allows...

LncRNAWiki 2.0: a knowledgebase of human long non-coding RNAs with enhanced curation model and database system.

Nucleic acids research
LncRNAWiki, a knowledgebase of human long non-coding RNAs (lncRNAs), has been rapidly expanded by incorporating more experimentally validated lncRNAs. Since it was built based on MediaWiki as its database system, it fails to manage data in a structur...