AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Multimodal Imaging

Showing 161 to 170 of 248 articles

Clear Filters

Research of Multimodal Medical Image Fusion Based on Parameter-Adaptive Pulse-Coupled Neural Network and Convolutional Sparse Representation.

Computational and mathematical methods in medicine
Visual effects of medical image have a great impact on clinical assistant diagnosis. At present, medical image fusion has become a powerful means of clinical application. The traditional medical image fusion methods have the problem of poor fusion re...

Multimodality image registration in the head-and-neck using a deep learning-derived synthetic CT as a bridge.

Medical physics
PURPOSE: To develop and demonstrate the efficacy of a novel head-and-neck multimodality image registration technique using deep-learning-based cross-modality synthesis.

Hypergraph based multi-task feature selection for multimodal classification of Alzheimer's disease.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Multi-modality based classification methods are superior to the single modality based approaches for the automatic diagnosis of the Alzheimer's disease (AD) and mild cognitive impairment (MCI). However, most of the multi-modality based methods usuall...

Disentangling brain functional network remodeling in corticobasal syndrome - A multimodal MRI study.

NeuroImage. Clinical
OBJECTIVE: The clinical diagnosis of corticobasal syndrome (CBS) represents a challenge for physicians and reliable diagnostic imaging biomarkers would support the diagnostic work-up. We aimed to investigate the neural signatures of CBS using multimo...

Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual.

Human brain mapping
Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the d...

Attenuation correction using 3D deep convolutional neural network for brain 18F-FDG PET/MR: Comparison with Atlas, ZTE and CT based attenuation correction.

PloS one
One of the main technical challenges of PET/MRI is to achieve an accurate PET attenuation correction (AC) estimation. In current systems, AC is accomplished by generating an MRI-based surrogate computed tomography (CT) from which AC-maps are derived....

Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis.

Human brain mapping
Previous structural and functional neuroimaging studies have implicated distributed brain regions and networks in depression. However, there are no robust imaging biomarkers that are specific to depression, which may be due to clinical heterogeneity ...

Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets.

Medical physics
PURPOSE: Accurate tumor segmentation is a requirement for magnetic resonance (MR)-based radiotherapy. Lack of large expert annotated MR datasets makes training deep learning models difficult. Therefore, a cross-modality (MR-CT) deep learning segmenta...

Deep Convolution Neural Network (DCNN) Multiplane Approach to Synthetic CT Generation From MR images-Application in Brain Proton Therapy.

International journal of radiation oncology, biology, physics
PURPOSE: The first aim of this work is to present a novel deep convolution neural network (DCNN) multiplane approach and compare it to single-plane prediction of synthetic computed tomography (sCT) by using the real computed tomography (CT) as ground...

Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI.

European journal of nuclear medicine and molecular imaging
OBJECTIVE: Quantitative PET/MR imaging is challenged by the accuracy of synthetic CT (sCT) generation from MR images. Deep learning-based algorithms have recently gained momentum for a number of medical image analysis applications. In this work, a no...