AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Nanopore Sequencing

Showing 11 to 20 of 23 articles

Clear Filters

Pair consensus decoding improves accuracy of neural network basecallers for nanopore sequencing.

Genome biology
We develop a general computational approach for improving the accuracy of basecalling with Oxford Nanopore's 1D and related sequencing protocols. Our software PoreOver ( https://github.com/jordisr/poreover ) finds the consensus of two neural networks...

DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning.

BMC genomics
BACKGROUND: Measuring DNA replication dynamics with high throughput and single-molecule resolution is critical for understanding both the basic biology behind how cells replicate their DNA and how DNA replication can be used as a therapeutic target f...

NanoCaller for accurate detection of SNPs and indels in difficult-to-map regions from long-read sequencing by haplotype-aware deep neural networks.

Genome biology
Long-read sequencing enables variant detection in genomic regions that are considered difficult-to-map by short-read sequencing. To fully exploit the benefits of longer reads, here we present a deep learning method NanoCaller, which detects SNPs usin...

SquiggleNet: real-time, direct classification of nanopore signals.

Genome biology
We present SquiggleNet, the first deep-learning model that can classify nanopore reads directly from their electrical signals. SquiggleNet operates faster than DNA passes through the pore, allowing real-time classification and read ejection. Using 1 ...

[Unsupervised deep learning for identifying the O -carboxymethyl guanine by nanopore sequencing].

Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
O -carboxymethyl guanine(O -CMG) is a highly mutagenic alkylation product of DNA that causes gastrointestinal cancer in organisms. Existing studies used mutant porin A (MspA) nanopore assisted by Phi29 DNA polymerase to localize it. Recently, machi...

DeepMP: a deep learning tool to detect DNA base modifications on Nanopore sequencing data.

Bioinformatics (Oxford, England)
MOTIVATION: DNA methylation plays a key role in a variety of biological processes. Recently, Nanopore long-read sequencing has enabled direct detection of these modifications. As a consequence, a range of computational methods have been developed to ...

Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling.

Genome biology
BACKGROUND: Nanopore-based DNA sequencing relies on basecalling the electric current signal. Basecalling requires neural networks to achieve competitive accuracies. To improve sequencing accuracy further, new models are continuously proposed with new...

NanoDeep: a deep learning framework for nanopore adaptive sampling on microbial sequencing.

Briefings in bioinformatics
Nanopore sequencers can enrich or deplete the targeted DNA molecules in a library by reversing the voltage across individual nanopores. However, it requires substantial computational resources to achieve rapid operations in parallel at read-time sequ...

A signal processing and deep learning framework for methylation detection using Oxford Nanopore sequencing.

Nature communications
Oxford Nanopore sequencing can detect DNA methylations from ionic current signal of single molecules, offering a unique advantage over conventional methods. Additionally, adaptive sampling, a software-controlled enrichment method for targeted sequenc...