AIMC Topic: Neurons

Clear Filters Showing 71 to 80 of 1388 articles

A deep learning framework for automated and generalized synaptic event analysis.

eLife
Quantitative information about synaptic transmission is key to our understanding of neural function. Spontaneously occurring synaptic events carry fundamental information about synaptic function and plasticity. However, their stochastic nature and lo...

Temporal Contrastive Learning through implicit non-equilibrium memory.

Nature communications
The backpropagation method has enabled transformative uses of neural networks. Alternatively, for energy-based models, local learning methods involving only nearby neurons offer benefits in terms of decentralized training, and allow for the possibili...

A deep learning strategy to identify cell types across species from high-density extracellular recordings.

Cell
High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals an...

Adaptive Synaptic Scaling in Spiking Networks for Continual Learning and Enhanced Robustness.

IEEE transactions on neural networks and learning systems
Synaptic plasticity plays a critical role in the expression power of brain neural networks. Among diverse plasticity rules, synaptic scaling presents indispensable effects on homeostasis maintenance and synaptic strength regulation. In the current mo...

Exploring temporal information dynamics in Spiking Neural Networks: Fast Temporal Efficient Training.

Journal of neuroscience methods
BACKGROUND: Spiking Neural Networks (SNNs) hold significant potential in brain simulation and temporal data processing. While recent research has focused on developing neuron models and leveraging temporal dynamics to enhance performance, there is a ...

An accurate and fast learning approach in the biologically spiking neural network.

Scientific reports
Computations adapted from the interactions of neurons in the nervous system have the potential to be a strong foundation for building computers with cognitive functions including decision-making, generalization, and real-time learning. In this contex...

Organic Artificial Nerves: Neuromorphic Robotics and Bioelectronics.

Chemical reviews
Neuromorphic electronics are inspired by the human brain's compact, energy-efficient nature and its parallel-processing capabilities. Beyond the brain, the entire human nervous system, with its hierarchical structure, efficiently preprocesses complex...

MARBLE: interpretable representations of neural population dynamics using geometric deep learning.

Nature methods
The dynamics of neuron populations commonly evolve on low-dimensional manifolds. Thus, we need methods that learn the dynamical processes over neural manifolds to infer interpretable and consistent latent representations. We introduce a representatio...

Spiking neural networks on FPGA: A survey of methodologies and recent advancements.

Neural networks : the official journal of the International Neural Network Society
The mimicry of the biological brain's structure in information processing enables spiking neural networks (SNNs) to exhibit significantly reduced power consumption compared to conventional systems. Consequently, these networks have garnered heightene...

Neuroevolution insights into biological neural computation.

Science (New York, N.Y.)
This article reviews existing work and future opportunities in neuroevolution, an area of machine learning in which evolutionary optimization methods such as genetic algorithms are used to construct neural networks to achieve desired behavior. The ar...