AIMC Topic: Optic Disk

Clear Filters Showing 91 to 100 of 169 articles

Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs.

Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
PURPOSE: To develop a deep learning approach based on deep residual neural network (ResNet101) for the automated detection of glaucomatous optic neuropathy (GON) using color fundus images, understand the process by which the model makes predictions, ...

Detecting glaucoma based on spectral domain optical coherence tomography imaging of peripapillary retinal nerve fiber layer: a comparison study between hand-crafted features and deep learning model.

Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
PURPOSE: To develop a deep learning (DL) model for automated detection of glaucoma and to compare diagnostic capability against hand-craft features (HCFs) based on spectral domain optical coherence tomography (SD-OCT) peripapillary retinal nerve fibe...

New grading criterion for retinal haemorrhages in term newborns based on deep convolutional neural networks.

Clinical & experimental ophthalmology
BACKGROUND: To define a new quantitative grading criterion for retinal haemorrhages in term newborns based on the segmentation results of a deep convolutional neural network.

Forecasting Retinal Nerve Fiber Layer Thickness from Multimodal Temporal Data Incorporating OCT Volumes.

Ophthalmology. Glaucoma
PURPOSE: The purpose of this study was to develop a machine learning model to forecast future circumpapillary retinal nerve fiber layer (cpRNFL) thickness in eyes of healthy, glaucoma suspect, and glaucoma participants from multimodal temporal data.

Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis.

IEEE journal of biomedical and health informatics
Despite the potential to revolutionise disease diagnosis by performing data-driven classification, clinical interpretability of ConvNet remains challenging. In this paper, a novel clinical interpretable ConvNet architecture is proposed not only for a...

Joint optic disc and cup segmentation using semi-supervised conditional GANs.

Computers in biology and medicine
Glaucoma is a chronic and widespread eye disease threatening humans' irreversible vision loss. The cup-to-disc ratio (CDR), one of the most important measurements used for glaucoma screening and diagnosis, requires accurate segmentation of optic disc...

A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head.

Scientific reports
Optical coherence tomography (OCT) has become an established clinical routine for the in vivo imaging of the optic nerve head (ONH) tissues, that is crucial in the diagnosis and management of various ocular and neuro-ocular pathologies. However, the ...

Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps.

Ophthalmology
PURPOSE: To develop and evaluate a deep learning system for differentiating between eyes with and without glaucomatous visual field damage (GVFD) and predicting the severity of GFVD from spectral domain OCT (SD OCT) optic nerve head images.

Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs.

Ophthalmology
PURPOSE: To develop and validate a deep learning (DL) algorithm that predicts referable glaucomatous optic neuropathy (GON) and optic nerve head (ONH) features from color fundus images, to determine the relative importance of these features in referr...