AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Peptides

Showing 41 to 50 of 455 articles

Clear Filters

How peptide migration and fraction bioactivity are modulated by applied electrical current conditions during electromembrane process separation: A comprehensive machine learning-based peptidomic approach.

Food research international (Ottawa, Ont.)
Industrial wastewaters are significant global concerns due to their environmental impact. Yet, protein-rich wastewaters can be valorized by enzymatic hydrolysis to release bioactive peptides. However, achieving selective molecular differentiation and...

NovoRank: Refinement for Peptide Sequencing Based on Spectral Clustering and Deep Learning.

Journal of proteome research
peptide sequencing is a valuable technique in mass-spectrometry-based proteomics, as it deduces peptide sequences directly from tandem mass spectra without relying on sequence databases. This database-independent method, however, relies solely on im...

In silico design of dehydrophenylalanine containing peptide activators of glucokinase using pharmacophore modelling, molecular dynamics and machine learning: implications in type 2 diabetes.

Journal of computer-aided molecular design
Diabetes represents a significant global health challenge associated with substantial healthcare costs and therapeutic complexities. Current diabetes therapies often entail adverse effects, necessitating the exploration of novel agents. Glucokinase (...

Deepstack-ACE: A deep stacking-based ensemble learning framework for the accelerated discovery of ACE inhibitory peptides.

Methods (San Diego, Calif.)
Identifying angiotensin-I-converting enzyme (ACE) inhibitory peptides accurately is crucial for understanding the primary factor that regulates the renin-angiotensin system and for providing guidance in developing new potential drugs. Given the inher...

Discovery of anticancer peptides from natural and generated sequences using deep learning.

International journal of biological macromolecules
Anticancer peptides (ACPs) demonstrate significant potential in clinical cancer treatment due to their ability to selectively target and kill cancer cells. In recent years, numerous artificial intelligence (AI) algorithms have been developed. However...

AntiT2DMP-Pred: Leveraging feature fusion and optimization for superior machine learning prediction of type 2 diabetes mellitus.

Methods (San Diego, Calif.)
Pancreatic α-amylase breaks down starch into isomaltose and maltose, which are further hydrolyzed by α-glucosidase in the intestine into monosaccharides, rapidly raising blood sugar levels and contributing to type 2 diabetes mellitus (T2DM). Syntheti...

High-Accuracy Identification and Structure-Activity Analysis of Antioxidant Peptides via Deep Learning and Quantum Chemistry.

Journal of chemical information and modeling
Antioxidant peptides (AOPs) hold great promise for mitigating oxidative-stress-related diseases, but their discovery is hindered by inefficient and time-consuming traditional methods. To address this, we developed an innovative framework combining ma...

Enhanced Sampling Simulations of RNA-Peptide Binding Using Deep Learning Collective Variables.

Journal of chemical information and modeling
Enhanced sampling (ES) simulations of biomolecular recognition, such as binding small molecules to proteins and nucleic acid targets, protein-protein association, and protein-nucleic acid interactions, have gained significant attention in the simulat...

pACP-HybDeep: predicting anticancer peptides using binary tree growth based transformer and structural feature encoding with deep-hybrid learning.

Scientific reports
Worldwide, Cancer remains a significant health concern due to its high mortality rates. Despite numerous traditional therapies and wet-laboratory methods for treating cancer-affected cells, these approaches often face limitations, including high cost...

π-PrimeNovo: an accurate and efficient non-autoregressive deep learning model for de novo peptide sequencing.

Nature communications
Peptide sequencing via tandem mass spectrometry (MS/MS) is essential in proteomics. Unlike traditional database searches, deep learning excels at de novo peptide sequencing, even for peptides missing from existing databases. Current deep learning mod...