Thoracic radiograph (TR) is a complementary exam widely used in small animal medicine which requires a sharp analysis to take full advantage of Radiographic Pulmonary Pattern (RPP). Although promising advances have been made in deep learning for vete...
OBJECTIVE: To evaluate the potential of deep learning models for categorization of dental caries in bitewing radiographs based on the International Caries Classification and Management System (ICCMS™) radiographic scoring system (RSS).
Flagging the presence of cardiac devices such as pacemakers before an MRI scan is essential to allow appropriate safety checks. We assess the accuracy with which a machine learning model can classify the presence or absence of a pacemaker on pre-exis...
OBJECTIVES: To identify the feasibility of deep learning-based diagnostic models for detecting and assessing lower-extremity fatigue fracture severity on plain radiographs.
Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) ...
The rotation and tilt of the pelvis during anteroposterior pelvic radiography can lead to misdiagnosis of developmental dysplasia of the hip (DDH) in children. At present, no method exists for accurately and conveniently measuring the precise rotatio...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.