AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Regulatory Sequences, Nucleic Acid

Showing 21 to 30 of 54 articles

Clear Filters

Convolutional neural networks (CNNs): concepts and applications in pharmacogenomics.

Molecular diversity
Convolutional neural networks (CNNs) have been used to extract information from various datasets of different dimensions. This approach has led to accurate interpretations in several subfields of biological research, like pharmacogenomics, addressing...

Interpreting machine learning models to investigate circadian regulation and facilitate exploration of clock function.

Proceedings of the National Academy of Sciences of the United States of America
The circadian clock is an important adaptation to life on Earth. Here, we use machine learning to predict complex, temporal, and circadian gene expression patterns in Most significantly, we classify circadian genes using DNA sequence features genera...

ReFeaFi: Genome-wide prediction of regulatory elements driving transcription initiation.

PLoS computational biology
Regulatory elements control gene expression through transcription initiation (promoters) and by enhancing transcription at distant regions (enhancers). Accurate identification of regulatory elements is fundamental for annotating genomes and understan...

Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram.

Nature methods
Charting an organs' biological atlas requires us to spatially resolve the entire single-cell transcriptome, and to relate such cellular features to the anatomical scale. Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) can profile cells comprehe...

CoRE-ATAC: A deep learning model for the functional classification of regulatory elements from single cell and bulk ATAC-seq data.

PLoS computational biology
Cis-Regulatory elements (cis-REs) include promoters, enhancers, and insulators that regulate gene expression programs via binding of transcription factors. ATAC-seq technology effectively identifies active cis-REs in a given cell type (including from...

TempoMAGE: a deep learning framework that exploits the causal dependency between time-series data to predict histone marks in open chromatin regions at time-points with missing ChIP-seq datasets.

Bioinformatics (Oxford, England)
MOTIVATION: Identifying histone tail modifications using ChIP-seq is commonly used in time-series experiments in development and disease. These assays, however, cover specific time-points leaving intermediate or early stages with missing information....

DeepCAGE: Incorporating Transcription Factors in Genome-wide Prediction of Chromatin Accessibility.

Genomics, proteomics & bioinformatics
Although computational approaches have been complementing high-throughput biological experiments for the identification of functional regions in the human genome, it remains a great challenge to systematically decipher interactions between transcript...

Chromatin interaction-aware gene regulatory modeling with graph attention networks.

Genome research
Linking distal enhancers to genes and modeling their impact on target gene expression are longstanding unresolved problems in regulatory genomics and critical for interpreting noncoding genetic variation. Here, we present a new deep learning approach...

seqgra: principled selection of neural network architectures for genomics prediction tasks.

Bioinformatics (Oxford, England)
MOTIVATION: Sequence models based on deep neural networks have achieved state-of-the-art performance on regulatory genomics prediction tasks, such as chromatin accessibility and transcription factor binding. But despite their high accuracy, their con...

Genome-wide cis-decoding for expression design in tomato using cistrome data and explainable deep learning.

The Plant cell
In the evolutionary history of plants, variation in cis-regulatory elements (CREs) resulting in diversification of gene expression has played a central role in driving the evolution of lineage-specific traits. However, it is difficult to predict expr...