AIMC Topic: Regulatory Sequences, Nucleic Acid

Clear Filters Showing 31 to 40 of 54 articles

pDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine.

Journal of theoretical biology
DNase I hypersensitive sites (DHSs) are accessible chromatin regions hypersensitive to cleavages by DNase I endonucleases. DHSs are indicative of cis-regulatory DNA elements (CREs), all of which play important roles in global gene expression regulati...

The identification of cis-regulatory elements: A review from a machine learning perspective.

Bio Systems
The majority of the human genome consists of non-coding regions that have been called junk DNA. However, recent studies have unveiled that these regions contain cis-regulatory elements, such as promoters, enhancers, silencers, insulators, etc. These ...

CREATE: cell-type-specific cis-regulatory element identification via discrete embedding.

Nature communications
Cis-regulatory elements (CREs), including enhancers, silencers, promoters and insulators, play pivotal roles in orchestrating gene regulatory mechanisms that drive complex biological traits. However, current approaches for CRE identification are pred...

An Attention-Based Deep Neural Network Model to Detect Cis-Regulatory Elements at the Single-Cell Level From Multi-Omics Data.

Genes to cells : devoted to molecular & cellular mechanisms
Cis-regulatory elements (cREs) play a crucial role in regulating gene expression and determining cell differentiation and state transitions. To capture the heterogeneous transitions of cell states associated with these processes, detecting cRE activi...

Semi-supervised learning with pseudo-labeling compares favorably with large language models for regulatory sequence prediction.

Briefings in bioinformatics
Predicting molecular processes using deep learning is a promising approach to provide biological insights for non-coding single nucleotide polymorphisms identified in genome-wide association studies. However, most deep learning methods rely on superv...

LegNet: a best-in-class deep learning model for short DNA regulatory regions.

Bioinformatics (Oxford, England)
MOTIVATION: The increasing volume of data from high-throughput experiments including parallel reporter assays facilitates the development of complex deep-learning approaches for modeling DNA regulatory grammar.

DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach.

Bioinformatics (Oxford, England)
MOTIVATION: Promoter-centered chromatin interactions, which include promoter-enhancer (PE) and promoter-promoter (PP) interactions, are important to decipher gene regulation and disease mechanisms. The development of next-generation sequencing techno...

Deep learning-assisted genome-wide characterization of massively parallel reporter assays.

Nucleic acids research
Massively parallel reporter assay (MPRA) is a high-throughput method that enables the study of the regulatory activities of tens of thousands of DNA oligonucleotides in a single experiment. While MPRA experiments have grown in popularity, their small...

Genome-wide cis-decoding for expression design in tomato using cistrome data and explainable deep learning.

The Plant cell
In the evolutionary history of plants, variation in cis-regulatory elements (CREs) resulting in diversification of gene expression has played a central role in driving the evolution of lineage-specific traits. However, it is difficult to predict expr...

seqgra: principled selection of neural network architectures for genomics prediction tasks.

Bioinformatics (Oxford, England)
MOTIVATION: Sequence models based on deep neural networks have achieved state-of-the-art performance on regulatory genomics prediction tasks, such as chromatin accessibility and transcription factor binding. But despite their high accuracy, their con...