AIMC Topic: Reinforcement, Psychology

Clear Filters Showing 11 to 20 of 264 articles

Deep reinforcement learning can promote sustainable human behaviour in a common-pool resource problem.

Nature communications
A canonical social dilemma arises when resources are allocated to people, who can either reciprocate with interest or keep the proceeds. The right resource allocation mechanisms can encourage levels of reciprocation that sustain the commons. Here, in...

Capsule DenseNet++: Enhanced autism detection framework with deep learning and reinforcement learning-based lifestyle recommendation.

Computers in biology and medicine
Autism Spectrum Disorder (ASD) is a complex neurological condition that impairs the ability to interact, communicate, and behave. It is becoming increasingly prevalent worldwide, with an increase in the number of young children diagnosed with ASD in ...

Predictive reward-prediction errors of climbing fiber inputs integrate modular reinforcement learning with supervised learning.

PLoS computational biology
Although the cerebellum is typically associated with supervised learning algorithms, it also exhibits extensive involvement in reward processing. In this study, we investigated the cerebellum's role in executing reinforcement learning algorithms, wit...

Of rats and robots: A mutual learning paradigm.

Journal of the experimental analysis of behavior
Robots are increasingly used alongside Skinner boxes to train animals in operant conditioning tasks. Similarly, animals are being employed in artificial intelligence research to train various algorithms. However, both types of experiments rely on uni...

Deep Reinforcement Learning in Human Activity Recognition: A Survey and Outlook.

IEEE transactions on neural networks and learning systems
Human activity recognition (HAR) is a popular research field in computer vision that has already been widely studied. However, it is still an active research field since it plays an important role in many current and emerging real-world intelligent s...

A novel voice in head actor critic reinforcement learning with human feedback framework for enhanced robot navigation.

Scientific reports
This work presents a novel Voice in Head (ViH) framework, that integrates Large Language Models (LLMs) and the power of semantic understanding to enhance robotic navigation and interaction within complex environments. Our system strategically combine...

Simulation of human-vehicle interaction at right-turn unsignalized intersections: A game-theoretic deep maximum entropy inverse reinforcement learning method.

Accident; analysis and prevention
The safety of pedestrians in urban transportation systems has emerged as a significant research topic. As a vulnerable group within this transportation framework, pedestrians encounter heightened safety risks in complex urban road environments. Prote...

Multi-agent deep reinforcement learning-based robotic arm assembly research.

PloS one
Due to the complexity and variability of application scenarios and the increasing demands for assembly, single-agent algorithms often face challenges in convergence and exhibit poor performance in robotic arm assembly processes. To address these issu...

Constraining an Unconstrained Multi-agent Policy with offline data.

Neural networks : the official journal of the International Neural Network Society
Real-world multi-agent decision-making systems often have to satisfy some constraints, such as harmfulness, economics, etc., spurring the emergence of Constrained Multi-Agent Reinforcement Learning (CMARL). Existing studies of CMARL mainly focus on t...

Hierarchical task network-enhanced multi-agent reinforcement learning: Toward efficient cooperative strategies.

Neural networks : the official journal of the International Neural Network Society
Navigating multi-agent reinforcement learning (MARL) environments with sparse rewards is notoriously difficult, particularly in suboptimal settings where exploration can be prematurely halted. To tackle these challenges, we introduce Hierarchical Sym...