AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Reinforcement, Psychology

Showing 1 to 10 of 255 articles

Clear Filters

Shared autonomy between human electroencephalography and TD3 deep reinforcement learning: A multi-agent copilot approach.

Annals of the New York Academy of Sciences
Deep reinforcement learning (RL) algorithms enable the development of fully autonomous agents that can interact with the environment. Brain-computer interface (BCI) systems decipher human implicit brain signals regardless of the explicit environment....

Reinforcement Learning-Driven Path Generation for Ankle Rehabilitation Robot Using Musculoskeletal-Informed Energy Optimization.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
In rehabilitation robotics, optimizing energy consumption and high interaction forces is essential to prevent unnecessary muscle fatigue and excessive joint loading as they often cause an inefficient trajectory planning and disrupt natural movement p...

Critical scenarios adversarial generation method for intelligent vehicles testing based on hierarchical reinforcement architecture.

Accident; analysis and prevention
The widespread deployment of intelligent vehicles necessitates comprehensive testing across diverse driving scenarios. A significant challenge is generating critical testing scenarios to accurately evaluate vehicle performance. To overcome the limita...

Deep reinforcement learning can promote sustainable human behaviour in a common-pool resource problem.

Nature communications
A canonical social dilemma arises when resources are allocated to people, who can either reciprocate with interest or keep the proceeds. The right resource allocation mechanisms can encourage levels of reciprocation that sustain the commons. Here, in...

Capsule DenseNet++: Enhanced autism detection framework with deep learning and reinforcement learning-based lifestyle recommendation.

Computers in biology and medicine
Autism Spectrum Disorder (ASD) is a complex neurological condition that impairs the ability to interact, communicate, and behave. It is becoming increasingly prevalent worldwide, with an increase in the number of young children diagnosed with ASD in ...

Predictive reward-prediction errors of climbing fiber inputs integrate modular reinforcement learning with supervised learning.

PLoS computational biology
Although the cerebellum is typically associated with supervised learning algorithms, it also exhibits extensive involvement in reward processing. In this study, we investigated the cerebellum's role in executing reinforcement learning algorithms, wit...

Rethinking exploration-exploitation trade-off in reinforcement learning via cognitive consistency.

Neural networks : the official journal of the International Neural Network Society
The exploration-exploitation dilemma is one of the fundamental challenges in deep reinforcement learning (RL). Agents must strike a trade-off between making decisions based on current beliefs or gathering more information. Prior work mostly prefers d...

Mastering diverse control tasks through world models.

Nature
Developing a general algorithm that learns to solve tasks across a wide range of applications has been a fundamental challenge in artificial intelligence. Although current reinforcement-learning algorithms can be readily applied to tasks similar to w...

Optimizing the dynamic treatment regime of outpatient rehabilitation in patients with knee osteoarthritis using reinforcement learning.

Journal of neuroengineering and rehabilitation
BACKGROUND: Knee osteoarthritis (KOA) is a prevalent chronic disease worldwide, and traditional treatment methods lack personalized adjustment for individual patient differences and cannot meet the needs of personalized treatment.

Combining meta reinforcement learning with neural plasticity mechanisms for improved AI performance.

PloS one
This research explores the potential of combining Meta Reinforcement Learning (MRL) with Spike-Timing-Dependent Plasticity (STDP) to enhance the performance and adaptability of AI agents in Atari game settings. Our methodology leverages MRL to swiftl...