AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Rotator Cuff Injuries

Showing 1 to 10 of 23 articles

Clear Filters

Deep learning for automated measurement of CSA related acromion morphological parameters on anteroposterior radiographs.

European journal of radiology
BACKGROUND: The Critical Shoulder Angle Related Acromion Morphological Parameter (CSA- RAMP) is a valuable tool in the analyzing the etiology of the rotator cuff tears (RCTs). However, its clinical application has been limited by the time-consuming a...

MRI-based automated multitask deep learning system to evaluate supraspinatus tendon injuries.

European radiology
OBJECTIVE: To establish an automated, multitask, MRI-based deep learning system for the detailed evaluation of supraspinatus tendon (SST) injuries.

Automated detection and classification of the rotator cuff tear on plain shoulder radiograph using deep learning.

Journal of shoulder and elbow surgery
BACKGROUND: The diagnosis of rotator cuff tears (RCTs) using radiographs alone is clinically challenging; thus, the utility of deep learning algorithms based on convolutional neural networks has been remarkable in the field of medical imaging recogni...

Machine-learning models for diagnosis of rotator cuff tears in osteoporosis patients based on anteroposterior X-rays of the shoulder joint.

SLAS technology
OBJECTIVE: This study aims to diagnose Rotator Cuff Tears (RCT) and classify the severity of RCT in patients with Osteoporosis (OP) through the analysis of shoulder joint anteroposterior (AP) X-ray-based localized proximal humeral bone mineral densit...

Ultrasound for Automated Classification of Full-Thickness Rotator Cuff Tendon Tears using Deep Learning.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Rotator cuff tendon tears, the most common shoulder injuries, are typically diagnosed mainly through MRI, but can also be seen on ultrasound (US), a much less costly test that currently requires highly-trained human expert operators. An AI tool to id...

Concomitant Procedures, Black Race, Male Sex, and General Anesthesia Show Fair Predictive Value for Prolonged Rotator Cuff Repair Operative Time: Analysis of the National Quality Improvement Program Database Using Machine Learning.

Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association
PURPOSE: To develop machine learning models using the American College of Surgeons National Quality Improvement Program (ACS-NSQIP) database to predict prolonged operative time (POT) for rotator cuff repair (RCR), as well as use the trained machine l...

Development of a deep learning-based fully automated segmentation of rotator cuff muscles from clinical MR scans.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: The fatty infiltration and atrophy in the muscle after a rotator cuff (RC) tear are important in surgical decision-making and are linked to poor clinical outcomes after rotator cuff repair. An accurate and reliable quantitative method sho...

Machine-learning models for shoulder rehabilitation exercises classification using a wearable system.

Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
PURPOSE: The objective of this study is to train and test machine-learning (ML) models to automatically classify shoulder rehabilitation exercises.

Predicting the Reparability of Rotator Cuff Tears: Machine Learning and Comparison With Previous Scoring Systems.

The American journal of sports medicine
BACKGROUND: Repair of rotator cuff tear is not always feasible, depending on the severity. Although several studies have investigated factors related to reparability and various methods to predict it, inconsistent scoring methods and a lack of valida...

Deep Learning-Driven Abbreviated Shoulder MRI Protocols: Diagnostic Accuracy in Clinical Practice.

Tomography (Ann Arbor, Mich.)
BACKGROUND: Deep learning (DL) reconstruction techniques have shown promise in reducing MRI acquisition times while maintaining image quality. However, the impact of different acceleration factors on diagnostic accuracy in shoulder MRI remains unexpl...