Sleep apnea, a fatal sleep disorder causing repetitive respiratory cessation, requires immediate intervention due to neuropsychological issues. However, existing approaches such as polysomnography, considered the most reliable and accurate test to de...
This paper presents a novel dual-branch framework for estimating blood pressure (BP) using photoplethysmography (PPG) signals. The method combines deep learning with clinical prior knowledge and models different time periods (morning, afternoon, and ...
Cardiovascular diseases (CVDs) are the leading global cause of death, which requires the early and accurate detection of cardiac abnormalities. Abnormal heart sounds, indicative of potential cardiac problems, pose a challenge due to their low-frequen...
Denoising artifacts, such as noise from muscle or cardiac activity, is a crucial and ubiquitous concern in neurophysiological signal processing, particularly for enhancing the signal-to-noise ratio in electroencephalograph (EEG) analysis. Novel metho...
BACKGROUND: The proportion of traffic accidents caused by fatigue driving is increasing year by year, which has aroused wide concerns for researchers. In order to rapidly and accurately detect drivers' fatigue, this paper proposed an electroencephalo...
Machine-learning-based automatic sleep stage scoring is a promising approach to enhance the time-consuming manual annotation process of polysomnography recordings. Although numerous algorithms have been proposed for this purpose, systematic explorati...
Electrocardiogram (ECG) signals are crucial in diagnosing cardiovascular diseases (CVDs). While wavelet-based feature extraction has demonstrated effectiveness in deep learning (DL)-based ECG diagnosis, selecting the optimal wavelet base poses a sign...
Accurate recognition and classification of motor imagery electroencephalogram (MI-EEG) signals are crucial for the successful implementation of brain-computer interfaces (BCI). However, inherent characteristics in original MI-EEG signals, such as non...
PURPOSE: Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch's ...
BACKGROUND: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are both progressive neurological disorders that affect the elderly. Distinguishing between individuals suffering from these two diseases in the early stages can be quite challeng...