Raman spectroscopy is a powerful diagnostic tool in biomedical science, whereby different disease groups can be classified based on subtle differences in the cell or tissue spectra. A key component in the classification of Raman spectra is the applic...
Micro-CT has important applications in biomedical research due to its ability to perform high-precision 3D imaging of micro-architecture in a non-invasive way. Because of the limited power of the radiation source, it is difficult to obtain a high sig...
The Journal of neuroscience : the official journal of the Society for Neuroscience
Jun 30, 2021
Distributed population codes are ubiquitous in the brain and pose a challenge to downstream neurons that must learn an appropriate readout. Here we explore the possibility that this learning problem is simplified through inductive biases implemented ...
Forward error correction coding is the most common way of channel coding and the key point of error correction coding. Therefore, the recognition of which coding type is an important issue in non-cooperative communication. At present, the recognition...
Computational intelligence and neuroscience
Jun 2, 2021
In the field of electronic countermeasure, the recognition of radar signals is extremely important. This paper uses GNU Radio and Universal Software Radio Peripherals to generate 10 classes of close-to-real multipulse radar signals, namely, Barker, C...
PURPOSE: State-of-the-art whole-brain MRSI with spatial-spectral encoding and multichannel acquisition generates huge amounts of data, which must be efficiently processed to stay within reasonable reconstruction times. Although coil combination signi...
IEEE transactions on bio-medical engineering
May 21, 2021
OBJECTIVE: The purpose of this work is to investigate the feasibility of using deep convolutional neural network (CNN) to improve the image quality of a grating-based X-ray differential phase contrast imaging (XPCI) system.
Environmental Microorganism Data Set Fifth Version (EMDS-5) is a microscopic image dataset including original Environmental Microorganism (EM) images and two sets of Ground Truth (GT) images. The GT image sets include a single-object GT image set and...
PURPOSE: To evaluate the feasibility of High-resolution (HR) magnetic resonance imaging (MRI) of the liver using deep learning reconstruction (DLR) based on a deep learning denoising technique compared with standard-resolution (SR) imaging.