AIMC Topic: Spectroscopy, Near-Infrared

Clear Filters Showing 41 to 50 of 278 articles

Age group classification based on optical measurement of brain pulsation using machine learning.

Scientific reports
Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monito...

Discrimination of unsound soybeans using hyperspectral imaging: A deep learning method based on dual-channel feature fusion strategy and attention mechanism.

Food research international (Ottawa, Ont.)
The application of high-level data fusion in the detection of agricultural products still presents a significant challenge. In this study, dual-channel feature fusion model (DCFFM) with attention mechanism was proposed to optimize the utilization of ...

Application of functional near-infrared spectroscopy and machine learning to predict treatment response after six months in major depressive disorder.

Translational psychiatry
Depression treatment responses vary widely among individuals. Identifying objective biomarkers with predictive accuracy for therapeutic outcomes can enhance treatment efficiency and avoid ineffective therapies. This study investigates whether functio...

Prediction of health anxiety using resting-state functional near-infrared spectroscopy and machine learning.

Journal of affective disorders
BACKGROUND: The role of cortical networks in health anxiety remain poorly understood. This study aimed to develop a predictive model for health anxiety, using a machine-learning approach based on resting-state functional connectivity (rsFC) with func...

Prediction of Deoxynivalenol contamination in wheat kernels and flour based on visible near-infrared spectroscopy, feature selection and machine learning modelling.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Contamination of wheat by the mycotoxin Deoxynivalenol (DON), produced by Fusarium fungi, poses significant challenges to the quality of crop yield and food safety. Visible and near-infrared (vis-NIR) spectroscopy has emerged as a promising, non-dest...

Seed Protein Content Estimation with Bench-Top Hyperspectral Imaging and Attentive Convolutional Neural Network Models.

Sensors (Basel, Switzerland)
Wheat is a globally cultivated cereal crop with substantial protein content present in its seeds. This research aimed to develop robust methods for predicting seed protein concentration in wheat seeds using bench-top hyperspectral imaging in the visi...

Characterizing Chinese saffron Origin, Age and grade using VNlR hyperspectral imaging and Machine learning.

Food research international (Ottawa, Ont.)
Saffron (Crocus sativus L.), the dried stigma, is an extremely valuable spice and medicinal herb, whose economic value is affected by geographical origin, age and grade. In this study, we proposed a method to identify saffron from different Chinese o...

Machine learning driven benchtop Vis/NIR spectroscopy for online detection of hybrid citrus quality.

Food research international (Ottawa, Ont.)
The aim of this study was to explore application of visible and near-infrared (Vis/NIR) spectroscopy combined with machine learning models for SSC and TA prediction of hybrid citrus. The Vis/NIR spectra of samples including navel-region, equator-regi...

Comparative performance of artificial neural networks and support vector Machines in detecting adulteration of apple juice concentrate using spectroscopy and time domain NMR.

Food research international (Ottawa, Ont.)
The detection of adulteration in apple juice concentrate is critical for ensuring product authenticity and consumer safety. This study evaluates the effectiveness of artificial neural networks (ANN) and support vector machines (SVM) in analyzing spec...

Quality prediction of air-cured cigar tobacco leaf using region-based neural networks combined with visible and near-infrared hyperspectral imaging.

Scientific reports
Visible and Near-infrared hyperspectral imaging (VNIR-HSI) combined with machine learning has shown its effectiveness in various detection applications. Specifically, the quality of cigar tobacco leaves undergoes subtle changes due to environmental d...