AIMC Topic: Stillbirth

Clear Filters Showing 11 to 16 of 16 articles

Prediction of obstetrical and fetal complications using automated electronic health record data.

American journal of obstetrics and gynecology
An increasing number of delivering women experience major morbidity and mortality. Limited work has been done on automated predictive models that could be used for prevention. Using only routinely collected obstetrical data, this study aimed to devel...

Stillbirth risk prediction using machine learning for a large cohort of births from Western Australia, 1980-2015.

Scientific reports
Quantification of stillbirth risk has potential to support clinical decision-making. Studies that have attempted to quantify stillbirth risk have been hampered by small event rates, a limited range of predictors that typically exclude obstetric histo...

Estimating risk of severe neonatal morbidity in preterm births under 32 weeks of gestation.

The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians
A large recent study analyzed the relationship between multiple factors and neonatal outcome and in preterm births. Study variables included the reason for admission, indication for delivery, optimal steroid use, gestational age, and other potential...

Machine Learning for Predicting Stillbirth: A Systematic Review.

Reproductive sciences (Thousand Oaks, Calif.)
Stillbirth is a major global issue, with over 5 million cases each year. The multifactorial nature of stillbirth makes it difficult to predict. Artificial intelligence (AI) and machine learning (ML) have the potential to enhance clinical decision-mak...

Towards deep phenotyping pregnancy: a systematic review on artificial intelligence and machine learning methods to improve pregnancy outcomes.

Briefings in bioinformatics
OBJECTIVE: Development of novel informatics methods focused on improving pregnancy outcomes remains an active area of research. The purpose of this study is to systematically review the ways that artificial intelligence (AI) and machine learning (ML)...

Synthetic minority oversampling of vital statistics data with generative adversarial networks.

Journal of the American Medical Informatics Association : JAMIA
OBJECTIVE: Minority oversampling is a standard approach used for adjusting the ratio between the classes on imbalanced data. However, established methods often provide modest improvements in classification performance when applied to data with extrem...