AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Synapses

Showing 21 to 30 of 312 articles

Clear Filters

A Spiking Artificial Vision Architecture Based on Fully Emulating the Human Vision.

Advanced materials (Deerfield Beach, Fla.)
Intelligent vision necessitates the deployment of detectors that are always-on and low-power, mirroring the continuous and uninterrupted responsiveness characteristic of human vision. Nonetheless, contemporary artificial vision systems attain this go...

A Self-Oscillated Organic Synapse for In-Memory Two-Factor Authentication.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Entering the era of AI 2.0, bio-inspired target recognition facilitates life. However, target recognition may suffer from some risks when the target is hijacked. Therefore, it is significantly important to provide an encryption process prior to neuro...

Dual-channel neural network for instance segmentation of synapse.

Computers in biology and medicine
Detection and segmentation of neural synapses in electron microscopy images are the committed steps for analyzing neural ultrastructure. To date, manual annotation of the structure in synapses has been the primary method, which is time-consuming and ...

Ensemble learning and ground-truth validation of synaptic connectivity inferred from spike trains.

PLoS computational biology
Probing the architecture of neuronal circuits and the principles that underlie their functional organization remains an important challenge of modern neurosciences. This holds true, in particular, for the inference of neuronal connectivity from large...

Perineuronal Net Microscopy: From Brain Pathology to Artificial Intelligence.

International journal of molecular sciences
Perineuronal nets (PNN) are a special highly structured type of extracellular matrix encapsulating synapses on large populations of CNS neurons. PNN undergo structural changes in schizophrenia, epilepsy, Alzheimer's disease, stroke, post-traumatic co...

Approximating Nonlinear Functions With Latent Boundaries in Low-Rank Excitatory-Inhibitory Spiking Networks.

Neural computation
Deep feedforward and recurrent neural networks have become successful functional models of the brain, but they neglect obvious biological details such as spikes and Dale's law. Here we argue that these details are crucial in order to understand how r...

A robust balancing mechanism for spiking neural networks.

Chaos (Woodbury, N.Y.)
Dynamical balance of excitation and inhibition is usually invoked to explain the irregular low firing activity observed in the cortex. We propose a robust nonlinear balancing mechanism for a random network of spiking neurons, which works also in the ...

Hypergraph-Based Numerical Spiking Neural Membrane Systems with Novel Repartition Protocols.

International journal of neural systems
The classic spiking neural P (SN P) systems abstract the real biological neural network into a simple structure based on graphs, where neurons can only communicate on the plane. This study proposes the hypergraph-based numerical spiking neural membra...

Spiking Neural Membrane Systems with Adaptive Synaptic Time Delay.

International journal of neural systems
Spiking neural membrane systems (or spiking neural P systems, SNP systems) are a new type of computation model which have attracted the attention of plentiful scholars for parallelism, time encoding, interpretability and extensibility. The original S...

Adaptive Synaptic Scaling in Spiking Networks for Continual Learning and Enhanced Robustness.

IEEE transactions on neural networks and learning systems
Synaptic plasticity plays a critical role in the expression power of brain neural networks. Among diverse plasticity rules, synaptic scaling presents indispensable effects on homeostasis maintenance and synaptic strength regulation. In the current mo...