AIMC Topic: Visual Field Tests

Clear Filters Showing 61 to 70 of 76 articles

High-Accuracy Digitization of Humphrey Visual Field Reports Using Convolutional Neural Networks.

Translational vision science & technology
PURPOSE: Glaucoma is a leading cause of irreversible blindness worldwide, necessitating precise visual field (VF) assessments for effective diagnosis and management. The ability to accurately digitize VF reports is critical for maximizing the utility...

Structure-Function Correlation of Deep-Learning Quantified Ellipsoid Zone and Retinal Pigment Epithelium Loss and Microperimetry in Geographic Atrophy.

Investigative ophthalmology & visual science
PURPOSE: The purpose of this study was to define structure-function correlation of geographic atrophy (GA) on optical coherence tomography (OCT) and functional testing on microperimetry (MP) based on deep-learning (DL)-quantified spectral-domain OCT ...

Explainable Deep Learning for Glaucomatous Visual Field Prediction: Artifact Correction Enhances Transformer Models.

Translational vision science & technology
PURPOSE: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.

Long-Term Rate of Optic Disc Rim Loss in Glaucoma Patients Measured From Optic Disc Photographs With a Deep Neural Network.

Translational vision science & technology
PURPOSE: This study uses deep neural network-generated rim-to-disc area ratio (RADAR) measurements and the disc damage likelihood scale (DDLS) to measure the rate of optic disc rim loss in a large cohort of glaucoma patients.

Transformer-Based Deep Learning Prediction of 10-Degree Humphrey Visual Field Tests From 24-Degree Data.

Translational vision science & technology
PURPOSE: To predict 10-2 Humphrey visual fields (VFs) from 24-2 VFs and associated non-total deviation features using deep learning.

Visual Field Prognosis From Macula and Circumpapillary Spectral Domain Optical Coherence Tomography.

Translational vision science & technology
PURPOSE: To explore the structural-functional loss relationship from optic-nerve-head- and macula-centred spectral-domain (SD) Optical Coherence Tomography (OCT) images in the full spectrum of glaucoma patients using deep-learning methods.

Improving the Accuracy and Speed of Visual Field Testing in Glaucoma With Structural Information and Deep Learning.

Translational vision science & technology
PURPOSE: To assess the performance of a perimetric strategy using structure-function predictions from a deep learning (DL) model.

Detecting Glaucoma in the Ocular Hypertension Study Using Deep Learning.

JAMA ophthalmology
IMPORTANCE: Automated deep learning (DL) analyses of fundus photographs potentially can reduce the cost and improve the efficiency of reading center assessment of end points in clinical trials.

Identifying the Retinal Layers Linked to Human Contrast Sensitivity Via Deep Learning.

Investigative ophthalmology & visual science
PURPOSE: Luminance contrast is the fundamental building block of human spatial vision. Therefore contrast sensitivity, the reciprocal of contrast threshold required for target detection, has been a barometer of human visual function. Although retinal...

Individualized Glaucoma Change Detection Using Deep Learning Auto Encoder-Based Regions of Interest.

Translational vision science & technology
PURPOSE: To compare change over time in eye-specific optical coherence tomography (OCT) retinal nerve fiber layer (RNFL)-based region-of-interest (ROI) maps developed using unsupervised deep-learning auto-encoders (DL-AE) to circumpapillary RNFL (cpR...