Perimetry is a non-invasive clinical psychometric examination used for diagnosing ophthalmic and neurological conditions. At its core, perimetry relies on a subject pressing a button whenever they see a visual stimulus within their field of view. Thi...
PURPOSE: To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT)...
PURPOSE: Previous approaches using deep learning (DL) algorithms to classify glaucomatous damage on fundus photographs have been limited by the requirement for human labeling of a reference training set. We propose a new approach using quantitative s...
INTRODUCTION: Visual field testing via standard automated perimetry (SAP) is a commonly used glaucoma diagnosis method. Applying machine learning techniques to the visual field test results, a valid clinical diagnosis of glaucoma solely based on the ...
PURPOSE: To determine whether a machine learning technique called Kalman filtering (KF) can accurately forecast future values of mean deviation (MD), pattern standard deviation, and intraocular pressure for patients with normal tension glaucoma (NTG)...
PURPOSE: We sought to construct and evaluate a deep learning (DL) model to diagnose early glaucoma from spectral-domain optical coherence tomography (OCT) images.
Glaucoma is the leading cause of irreversible blindness worldwide. Early detection is of utmost importance as there is abundant evidence that early treatment prevents disease progression, preserves vision, and improves patients' long-term quality of ...