Machine learning and deep learning are extensively employed in genomic selection (GS) to expedite the identification of superior genotypes and accelerate breeding cycles. However, a significant challenge with current data-driven deep learning models ...
This study addresses the challenge of predicting Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) density in cornfields by developing an artificial neural network (ANN). Over two years, we collected data on meteorological variables (atmos...
Analytical methods : advancing methods and applications
Dec 5, 2024
This study investigates the application of near-infrared spectroscopy (NIR) for assessing drought resistance in seeds, aiming to offer a rapid and efficient method suitable for large-scale primary screening. NIR spectroscopy is utilized to analyze fo...
Accurate and rapid detection of nicosulfuron herbicide residues in field-grown maize is essential for implementing chemical remediation and optimizing spraying strategies. However, current detection methods are costly and time-consuming. This study a...
Cereals, grains, and feedstuffs are prone to contamination by fungi during various stages from growth to storage. These fungi may produce harmful mycotoxins impacting food quality and safety. Thus, the development of quick and reliable methods for on...
Corn straws can produce bioethanol via simultaneous saccharification and co-fermentation (SSCF). However, identifying optimal combinations of operating parameters from numerous possibilities through a cost-effective strategy to improve SSCF efficienc...
This review article provides a comprehensive examination of the state-of-the-art in maize disease detection leveraging Convolutional Neural Networks (CNNs). Beginning with the intrinsic significance of plants and the pivotal role of maize in global a...
International journal of biological macromolecules
Sep 28, 2024
Lignin has been recognized as a major factor contributing to lignocellulosic recalcitrance in biofuel production and attracted attentions as a high-value product in the biorefinery field. As the traditional wet chemical methods for detecting lignin c...
Cellulose and hemicellulose are key cross-linked carbohydrates affecting bioethanol production in maize stalks. Traditional wet chemical methods for their detection are labor-intensive, highlighting the need for high-throughput techniques. This study...
Near-infrared (NIR) spectroscopy has been widely utilized to predict multi-constituents of corn in agriculture. However, directly extracting constituent information from the NIR spectra is challenging due to many issues such as broad absorption band,...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.