AI Medical Compendium

Explore the latest research on artificial intelligence and machine learning in medicine.

Showing 111 to 120 of 1040 articles

Clear Filters

Machine Learning Identification and Classification of Mitosis and Migration of Cancer Cells in a Lab-on-CMOS Capacitance Sensing Platform.

IEEE journal of biomedical and health informatics
Cell culture assays play a vital role in various fields of biology. Conventional assay techniques like immunohistochemistry, immunofluorescence, and flow cytometry offer valuable insights into cell phenotype and behavior. However, each of these techn...

Multiclass Classification Framework of Motor Imagery EEG by Riemannian Geometry Networks.

IEEE journal of biomedical and health informatics
In motor imagery (MI) tasks for brain computer interfaces (BCIs), the spatial covariance matrix (SCM) of electroencephalogram (EEG) signals plays a critical role in accurate classification. Given that SCMs are symmetric positive definite (SPD), Riema...

SleepECG-Net: Explainable Deep Learning Approach With ECG for Pediatric Sleep Apnea Diagnosis.

IEEE journal of biomedical and health informatics
Obstructive sleep apnea (OSA) in children is a prevalent and serious respiratory condition linked to cardiovascular morbidity. Polysomnography, the standard diagnostic approach, faces challenges in accessibility and complexity, leading to underdiagno...

M-NET: Transforming Single Nucleotide Variations Into Patient Feature Images for the Prediction of Prostate Cancer Metastasis and Identification of Significant Pathways.

IEEE journal of biomedical and health informatics
High-performance prediction of prostate cancer metastasis based on single nucleotide variations remains a challenge. Therefore, we developed a novel biologically informed deep learning framework, named M-NET, for the prediction of prostate cancer met...

Incremental Classification for High-Dimensional EEG Manifold Representation Using Bidirectional Dimensionality Reduction and Prototype Learning.

IEEE journal of biomedical and health informatics
In brain-computer interface (BCI) systems, symmetric positive definite (SPD) manifold within Riemannian space has been frequently utilized to extract spatial features from electroencephalogram (EEG) signals. However, the intrinsic high dimensionality...

ADR-DQPU: A Novel ADR Signal Detection Using Deep Reinforcement and Positive-Unlabeled Learning.

IEEE journal of biomedical and health informatics
The medical community has grappled with the challenge of analysis and early detection of severe and unknown adverse drug reactions (ADRs) from Spontaneous Reporting Systems (SRSs) like the FDA Adverse Event Reporting System (FAERS), which often lack ...

Bias Amplification to Facilitate the Systematic Evaluation of Bias Mitigation Methods.

IEEE journal of biomedical and health informatics
The future of artificial intelligence (AI) safety is expected to include bias mitigation methods from development to application. The complexity and integration of these methods could grow in conjunction with advances in AI and human-AI interactions....

UnBias: Unveiling Bias Implications in Deep Learning Models for Healthcare Applications.

IEEE journal of biomedical and health informatics
The rapid integration of deep learning-powered artificial intelligence systems in diverse applications such as healthcare, credit assessment, employment, and criminal justice has raised concerns about their fairness, particularly in how they handle v...

CellCircLoc: Deep Neural Network for Predicting and Explaining Cell Line-Specific CircRNA Subcellular Localization.

IEEE journal of biomedical and health informatics
The subcellular localization of circular RNAs (circRNAs) is crucial for understanding their functional relevance and regulatory mechanisms. CircRNA subcellular localization exhibits variations across different cell lines, demonstrating the diversity ...

EEG Temporal-Spatial Feature Learning for Automated Selection of Stimulus Parameters in Electroconvulsive Therapy.

IEEE journal of biomedical and health informatics
The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the necessary generalized seizure (GS); Conversely, inadequate stimulus results in failure. Recent...