AI Medical Compendium Journal:
BMC public health

Showing 11 to 20 of 81 articles

Random forest algorithm for predicting tobacco use and identifying determinants among pregnant women in 26 sub-Saharan African countries: a 2024 analysis.

BMC public health
INTRODUCTION: Tobacco use during pregnancy is a significant public health concern, associated with adverse maternal and neonatal outcomes. Despite its critical importance, comprehensive data on tobacco use among pregnant women in sub-Saharan Africa i...

Domestic violence and childhood trauma among married women using machine learning approach: a cross-sectional study.

BMC public health
BACKGROUND: Globally, 27% of ever-partnered women aged 15-49 have experienced physical, sexual, or intimate partner violence at least once in their lifetime. In Saudi Arabia, domestic violence (DV) remains a concern despite cultural and economic adva...

Prediction of outpatient visits for allergic rhinitis using an artificial intelligence LSTM model - a study in Eastern China.

BMC public health
BACKGROUND: Allergic rhinitis is a common disease that can affect the health of patients and bring huge social and economic burdens. In this study, we developed a model to predict the incidence rate of allergic rhinitis so as to provide accurate info...

A validity and reliability study of the artificial intelligence attitude scale (AIAS-4) and its relationship with social media addiction and eating behaviors in Turkish adults.

BMC public health
BACKGROUND: In recent years, there has been a rapid increase in the use of the internet and social media. Billions of people worldwide use social media and spend an average of 2.2 h a day on these platforms. At the same time, artificial intelligence ...

Interpretable machine learning method to predict the risk of pre-diabetes using a national-wide cross-sectional data: evidence from CHNS.

BMC public health
OBJECTIVE: The incidence of Type 2 Diabetes Mellitus (T2DM) continues to rise steadily, significantly impacting human health. Early prediction of pre-diabetic risks has emerged as a crucial public health concern in recent years. Machine learning meth...

Catenation between mHealth application advertisements and cardiovascular diseases: moderation of artificial intelligence (AI)-enabled internet of things, digital divide, and individual trust.

BMC public health
BACKGROUND: World Health Organization (WHO) identified noncommunicable diseases as the foremost risk to public health globally and the cause of approximately 80% of premature deaths. However, Cardiovascular diseases account for most of these prematur...

Forecasting dengue across Brazil with LSTM neural networks and SHAP-driven lagged climate and spatial effects.

BMC public health
BACKGROUND: Dengue fever is a mosquito-borne viral disease that poses significant health risks and socioeconomic challenges in Brazil, necessitating accurate forecasting across its 27 federal states. With the country's diverse climate and geographica...

Integration of large-scale community-developed causal loop diagrams: a Natural Language Processing approach to merging factors based on semantic similarity.

BMC public health
BACKGROUND: Complex public health problems have been addressed in communities through systems thinking and participatory methods like Group Model Building (GMB) and Causal Loop Diagrams (CLDs) albeit with some challenges. This study aimed to explore ...

Application of the random forest algorithm to predict skilled birth attendance and identify determinants among reproductive-age women in 27 Sub-Saharan African countries; machine learning analysis.

BMC public health
INTRODUCTION: Maternal mortality refers to a mother's death owing to complications arising from childbirth or pregnancy. This issue is a forefront public health challenge around the globe which is pronounced in low- and middle-income countries, parti...

Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning.

BMC public health
BACKGROUND: Metabolic diseases (MDs), exemplified by diabetes, hypertension, and dyslipidemia, have become increasingly prevalent with rising living standards, posing significant public health challenges. The MDs are influenced by a complex interplay...