The benchmark method for the evaluation of breast cancers involves microscopic testing of a hematoxylin and eosin (H&E)-stained tissue biopsy. Resurgery is required in 20% to 30% of cases because of incomplete excision of malignant tissues. Therefore...
Convolutional neural networks (CNNs) are powerful tools for image segmentation and classification. Here, we use this method to identify and mark the heart region of Drosophila at different developmental stages in the cross-sectional images acquired b...
Hierarchical variants of so-called deep convolutional neural networks (DCNNs) have facilitated breakthrough results for numerous pattern recognition tasks in recent years. We assess the potential of these novel whole-image classifiers for Raman-micro...
Accurate and immediate diagnosis of malaria is important for medication of the infectious disease. Conventional methods for diagnosing malaria are time consuming and rely on the skill of experts. Therefore, an automatic and simple diagnostic modality...
Optical coherence tomography (OCT) can demonstrate early deterioration of the photoreceptor integrity caused by inherited retinal degeneration diseases (IRDs). A machine learning method based on random forests was developed to automatically detect co...
The present paper introduces a focus stacking-based approach for automated quantitative detection of Plasmodium falciparum malaria from blood smear. For the detection, a custom designed convolutional neural network (CNN) operating on focus stack of i...
In this study we identify and classify high and low levels of glycated hemoglobin (HbA1c) in healthy volunteers (HV) and diabetic patients (DP). Overall, 86 subjects were evaluated. The Raman spectrum was measured in three anatomical regions of the b...