Computational models of atrial fibrillation (AF) can help improve success rates of interventions, such as ablation. However, evaluating the efficacy of different treatments requires performing multiple costly simulations by pacing at different points...
In endometrial cancer (EC) and colorectal cancer (CRC), in addition to microsatellite instability, tumor mutational burden (TMB) has gradually gained attention as a genomic biomarker that can be used clinically to determine which patients may benefit...
Characterization of breast parenchyma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging task owing to the complexity of underlying tissue structures. Existing quantitative approaches, like radiomics and deep learning ...
Coronary artery disease (CAD) is one of the leading causes of death worldwide. Accurate extraction of individual arterial branches from invasive coronary angiograms (ICA) is critical for CAD diagnosis and detection of stenosis. Generating semantic se...
In brain network analysis, individual-level data can provide biological features of individuals, while population-level data can provide demographic information of populations. However, existing methods mostly utilize either individual- or population...
Nuclear-derived morphological features and biomarkers provide relevant insights regarding the tumour microenvironment, while also allowing diagnosis and prognosis in specific cancer types. However, manually annotating nuclei from the gigapixel Haemat...
Breast cancer is a significant global public health concern, with various treatment options available based on tumor characteristics. Pathological examination of excision specimens after surgery provides essential information for treatment decisions....
Deep convolutional neural networks for image segmentation do not learn the label structure explicitly and may produce segmentations with an incorrect structure, e.g., with disconnected cylindrical structures in the segmentation of tree-like structure...
Magnetic Resonance Spectroscopic Imaging (MRSI) is a non-invasive imaging technique for studying metabolism and has become a crucial tool for understanding neurological diseases, cancers and diabetes. High spatial resolution MRSI is needed to charact...
Deep-learning-based deformable image registration (DL-DIR) has demonstrated improved accuracy compared to time-consuming non-DL methods across various anatomical sites. However, DL-DIR is still challenging in heterogeneous tissue regions with large d...