Perception of supraliminal stimuli might in general be reflected in bursts of action potentials (spikes), and their memory traces could be formed through spike-timing-dependent plasticity (STDP). Memory traces for subliminal stimuli might be formed i...
Because different parts of the brain have rich interconnections, it is not possible to model small parts realistically in isolation. However, it is also impractical to simulate large neural systems in detail. This article outlines a new approach to m...
Journal of computational neuroscience
Mar 13, 2015
Granger causality (GC) analysis has emerged as a powerful analytical method for estimating the causal relationship among various types of neural activity data. However, two problems remain not very clear and further researches are needed: (1) The GC ...
This letter presents a spike-based model that employs neurons with functionally distinct dendritic compartments for classifying high-dimensional binary patterns. The synaptic inputs arriving on each dendritic subunit are nonlinearly processed before ...
Memristors have been extensively studied for data storage and low-power computation applications. In this study, we show that memristors offer more than simple resistance change. Specifically, the dynamic evolutions of internal state variables allow ...
A striking feature of biological pattern generators is their ability to respond immediately to multisensory perturbations by modulating the dwell time at a particular phase of oscillation, which can vary force output, range of motion, or other charac...
Spike sorting, i.e., the separation of the firing activity of different neurons from extracellular measurements, is a crucial but often error-prone step in the analysis of neuronal responses. Usually, three different problems have to be solved: the d...
Understanding the patterns of interconnections between neurons in complex networks is an enormous challenge using traditional physiological approaches. Here we combine the use of an information theoretic approach with intracellular recording to estab...
IEEE transactions on neural networks and learning systems
Jan 27, 2015
This paper presents a bioinspired digital liquid-state machine (LSM) for low-power very-large-scale-integration (VLSI)-based machine learning applications. To the best of the authors' knowledge, this is the first work that employs a bioinspired spike...
Journal of computational neuroscience
Jan 21, 2015
In this paper we provide a general methodology for systematically reducing the dynamics of a class of integrate-and-fire networks down to an augmented 4-dimensional system of ordinary-differential-equations. The class of integrate-and-fire networks w...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.