AIMC Topic: Adenocarcinoma

Clear Filters Showing 61 to 70 of 238 articles

Predicting Lymph Node Metastasis From Primary Cervical Squamous Cell Carcinoma Based on Deep Learning in Histopathologic Images.

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
We developed a deep learning framework to accurately predict the lymph node status of patients with cervical cancer based on hematoxylin and eosin-stained pathological sections of the primary tumor. In total, 1524 hematoxylin and eosin-stained whole ...

Standardized Classification of Lung Adenocarcinoma Subtypes and Improvement of Grading Assessment Through Deep Learning.

The American journal of pathology
The histopathologic distinction of lung adenocarcinoma (LADC) subtypes is subject to high interobserver variability, which can compromise the optimal assessment of patient prognosis. Therefore, this study developed convolutional neural networks capab...

Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT.

AJR. American journal of roentgenology
Pure ground-glass nodules (pGGNs) on chest CT representing invasive adenocarcinoma (IAC) warrant lobectomy with lymph node resection. For pGGNs representing other entities, close follow-up or sublobar resection without node dissection may be appropr...

Integrative deep learning analysis improves colon adenocarcinoma patient stratification at risk for mortality.

EBioMedicine
BACKGROUND: Colorectal cancers are the fourth most diagnosed cancer and the second leading cancer in number of deaths. Many clinical variables, pathological features, and genomic signatures are associated with patient risk, but reliable patient strat...

High accuracy epidermal growth factor receptor mutation prediction via histopathological deep learning.

BMC pulmonary medicine
BACKGROUND: The detection of epidermal growth factor receptor (EGFR) mutations in patients with non-small cell lung cancer is critical for tyrosine kinase inhibitor therapy. EGFR detection requires tissue samples, which are difficult to obtain in som...

Deep Learning Nomogram for the Identification of Deep Stromal Invasion in Patients With Early-Stage Cervical Adenocarcinoma and Adenosquamous Carcinoma: A Multicenter Study.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Deep stromal invasion (DSI) is one of the predominant risk factors that determined the types of radical hysterectomy (RH). Thus, the accurate assessment of DSI in cervical adenocarcinoma (AC)/adenosquamous carcinoma (ASC) can facilitate o...

DARMF-UNet: A dual-branch attention-guided refinement network with multi-scale features fusion U-Net for gland segmentation.

Computers in biology and medicine
Accurate gland segmentation is critical in determining adenocarcinoma. Automatic gland segmentation methods currently suffer from challenges such as less accurate edge segmentation, easy mis-segmentation, and incomplete segmentation. To solve these p...