AIMC Topic: Adsorption

Clear Filters Showing 11 to 20 of 167 articles

Comparative immobilization of 30 PFAS mixtures onto biochar, clay, nanoparticle, and polymer derived engineered adsorbents: Machine learning insights into carbon chain length and removal mechanism.

Journal of hazardous materials
Per- and polyfluoroalkyl substances (PFAS) are a group of fluorinated chemicals that cause potential risk in PFAS-impacted soil and water. The adsorption efficiency of 30 PFAS mixtures using different adsorbents in environmentally relevant concentrat...

Integrated learning framework for enhanced specific surface area, pore size, and pore volume prediction of biochar.

Bioresource technology
Specific surface area, pore size, and pore volume are essential biochar properties. Optimization typically reduces yield by focusing on per gram of biochar. This work introduces new indicators and an integrated model to balance quality and quantity, ...

Selective gas adsorption using graphitic carbon nitride: Exploring the role of molecular descriptors by artificial intelligence frameworks.

Journal of environmental management
Artificial Intelligence (AI) frameworks estimate the adsorption energies of crucial pollutants like CO, O, NO, NO, SOF, HCHO, and CO on Graphitic Carbon Nitride (g-CN) surfaces. The predictive capabilities of two AI-based models, namely, Artificial N...

Integration of machine learning and meta-analysis reveals the behaviors and mechanisms of antibiotic adsorption on microplastics.

Journal of hazardous materials
Microplastics (MPs) can adsorb antibiotics (ATs) to cause combined pollution in the environment. Research on this topic has been limited to specific types of MPs and ATs, resulting in inconsistent findings, particularly for the influencing factors an...

Developing a machine learning-based predictive model for cesium sorption distribution coefficient on crushed granite.

Journal of environmental radioactivity
The sorption of radionuclides on granite has been extensively studied over the past few decades due to its significance in the safety assessment of geological disposal for high-level radioactive waste (HLW). The sorption properties of granite for rad...

Machine learning-assisted prediction of engineered carbon systems' capacity to treat textile dyeing wastewater via adsorption technology.

Environmental monitoring and assessment
Dyes are widely used in industries like printing, cosmetics, paper, leather processing, textiles, and manufacturing to add color to products. However, improper disposal of dyes into wastewater has raised major concerns due to their harmful effects on...

ANN-assisted comprehensive screening of silica gel-alunite composite sorbent system for efficient adsorption of toxic nickel ions: Batch and continuous mode water treatment applications.

Chemosphere
Through batch and fixed-bed column operations, nickel ions were extracted from a contaminated aqueous media by adsorption onto silica gel-immobilized alunite (Sg@Aln). A three-layer backward-propagating network with an ideal pattern of 5-10-1 and 4-1...

Machine learning models for predicting interaction affinity energy between human serum proteins and hemodialysis membrane materials.

Scientific reports
Membrane incompatibility poses significant health risks, including severe complications and potential fatality. Surface modification of membranes has emerged as a pivotal technology in the membrane industry, aiming to improve the hemocompatibility an...

An exploration of RSM, ANN, and ANFIS models for methylene blue dye adsorption using Oryza sativa straw biomass: a comparative approach.

Scientific reports
This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inferen...

Exposure experiments and machine learning revealed that personal care products can significantly increase transdermal exposure of SVOCs from the environment.

Journal of hazardous materials
We investigated the impacts of personal care products (PCPs) on dermal exposure to semi-volatile organic compounds (SVOCs), including phthalates, organophosphate esters, polycyclic aromatic hydrocarbons (PAHs), ultraviolet filters, and p-phenylenedia...