AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Amino Acids

Showing 111 to 120 of 222 articles

Clear Filters

Identification of infectious disease-associated host genes using machine learning techniques.

BMC bioinformatics
BACKGROUND: With the global spread of multidrug resistance in pathogenic microbes, infectious diseases emerge as a key public health concern of the recent time. Identification of host genes associated with infectious diseases will improve our underst...

iProDNA-CapsNet: identifying protein-DNA binding residues using capsule neural networks.

BMC bioinformatics
BACKGROUND: Since protein-DNA interactions are highly essential to diverse biological events, accurately positioning the location of the DNA-binding residues is necessary. This biological issue, however, is currently a challenging task in the age of ...

Exploring the limitations of biophysical propensity scales coupled with machine learning for protein sequence analysis.

Scientific reports
Machine learning (ML) is ubiquitous in bioinformatics, due to its versatility. One of the most crucial aspects to consider while training a ML model is to carefully select the optimal feature encoding for the problem at hand. Biophysical propensity s...

Machine learning techniques for protein function prediction.

Proteins
Proteins play important roles in living organisms, and their function is directly linked with their structure. Due to the growing gap between the number of proteins being discovered and their functional characterization (in particular as a result of ...

PaleAle 5.0: prediction of protein relative solvent accessibility by deep learning.

Amino acids
Predicting the three-dimensional structure of proteins is a long-standing challenge of computational biology, as the structure (or lack of a rigid structure) is well known to determine a protein's function. Predicting relative solvent accessibility (...

Enabling full-length evolutionary profiles based deep convolutional neural network for predicting DNA-binding proteins from sequence.

Proteins
Sequence based DNA-binding protein (DBP) prediction is a widely studied biological problem. Sliding windows on position specific substitution matrices (PSSMs) rows predict DNA-binding residues well on known DBPs but the same models cannot be applied ...

Recognition of early and late stages of bladder cancer using metabolites and machine learning.

Metabolomics : Official journal of the Metabolomic Society
INTRODUCTION: Bladder cancer (BCa) is one of the most common and aggressive cancers. It is the sixth most frequently occurring cancer in men and its rate of occurrence increases with age. The current method of BCa diagnosis includes a cystoscopy and ...

The Classifying Autoencoder: Gaining Insight into Amyloid Assembly of Peptides and Proteins.

The journal of physical chemistry. B
Despite the importance of amyloid formation in disease pathology, the understanding of the primary structure?activity relationship for amyloid-forming peptides remains elusive. Here we use a new neural-network based method of analysis: the classifyin...

Auto-encoding NMR chemical shifts from their native vector space to a residue-level biophysical index.

Nature communications
Chemical shifts (CS) are determined from NMR experiments and represent the resonance frequency of the spin of atoms in a magnetic field. They contain a mixture of information, encompassing the in-solution conformations a protein adopts, as well as th...

Discrimination power of knowledge-based potential dictated by the dominant energies in native protein structures.

Amino acids
Extracting a well-designed energy function is important for protein structure evaluation. Knowledge-based potential functions are one type of the energy functions which can be obtained from known protein structures. The pairwise potential between ato...