AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Angiogenesis Inhibitors

Showing 21 to 30 of 65 articles

Clear Filters

Clinically applicable deep learning-based decision aids for treatment of neovascular AMD.

Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
PURPOSE: Anti-vascular endothelial growth factor (Anti-VEGF) therapy is currently seen as the standard for treatment of neovascular AMD (nAMD). However, while treatments are highly effective, decisions for initial treatment and retreatment are often ...

Correlation of vascular and fluid-related parameters in neovascular age-related macular degeneration using deep learning.

Acta ophthalmologica
PURPOSE: To identify correlations between the vascular characteristics of macular neovascularization (MNV) obtained by optical coherence tomography angiography (OCTA) and distinct retinal fluid volumes in neovascular age-related macular degeneration ...

KFWC: A Knowledge-Driven Deep Learning Model for Fine-grained Classification of Wet-AMD.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Automated diagnosis using deep neural networks can help ophthalmologists detect the blinding eye disease wet Age-related Macular Degeneration (AMD). Wet-AMD has two similar subtypes, Neovascular AMD and Polypoidal Choroidal...

Performance of retinal fluid monitoring in OCT imaging by automated deep learning versus human expert grading in neovascular AMD.

Eye (London, England)
PURPOSE: To evaluate the reliability of automated fluid detection in identifying retinal fluid activity in OCT scans of patients treated with anti-VEGF therapy for neovascular age-related macular degeneration by correlating human expert and automated...

Deep-learning based automated quantification of critical optical coherence tomography features in neovascular age-related macular degeneration.

Eye (London, England)
PURPOSE: To validate a deep learning algorithm for automated intraretinal fluid (IRF), subretinal fluid (SRF) and neovascular pigment epithelium detachment (nPED) segmentations in neovascular age-related macular degeneration (nAMD).

Predicting Visual Acuity Responses to Anti-VEGF Treatment in the Comparison of Age-related Macular Degeneration Treatments Trials Using Machine Learning.

Ophthalmology. Retina
PURPOSE: To evaluate multiple machine learning (ML) models for predicting 2-year visual acuity (VA) responses to anti-vascular endothelial growth factor (anti-VEGF) treatment in the Comparison of Age-related Macular Degeneration (AMD) Treatments Tria...

Suitability of machine learning for atrophy and fibrosis development in neovascular age-related macular degeneration.

Acta ophthalmologica
PURPOSE: To assess the suitability of machine learning (ML) techniques in predicting the development of fibrosis and atrophy in patients with neovascular age-related macular degeneration (nAMD), receiving anti-VEGF treatment over a 36-month period.

Preliminary analysis of predicting the first recurrence in patients with neovascular age-related macular degeneration using deep learning.

BMC ophthalmology
BACKGROUND: To predict, using deep learning, the first recurrence in patients with neovascular age-related macular degeneration (nAMD) after three monthly loading injections of intravitreal anti-vascular endothelial growth factor (anti-VEGF).