AIMC Topic: Angiogenesis Inhibitors

Clear Filters Showing 21 to 30 of 72 articles

Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework.

Computers in biology and medicine
BACKGROUND: Angiogenesis plays a vital role in the pathogenesis of several human diseases, particularly in the case of solid tumors. In the realm of cancer treatment, recent investigations into peptides with anti-angiogenic properties have yielded en...

Suitability of machine learning for atrophy and fibrosis development in neovascular age-related macular degeneration.

Acta ophthalmologica
PURPOSE: To assess the suitability of machine learning (ML) techniques in predicting the development of fibrosis and atrophy in patients with neovascular age-related macular degeneration (nAMD), receiving anti-VEGF treatment over a 36-month period.

Preliminary analysis of predicting the first recurrence in patients with neovascular age-related macular degeneration using deep learning.

BMC ophthalmology
BACKGROUND: To predict, using deep learning, the first recurrence in patients with neovascular age-related macular degeneration (nAMD) after three monthly loading injections of intravitreal anti-vascular endothelial growth factor (anti-VEGF).

Predicting Visual Acuity Responses to Anti-VEGF Treatment in the Comparison of Age-related Macular Degeneration Treatments Trials Using Machine Learning.

Ophthalmology. Retina
PURPOSE: To evaluate multiple machine learning (ML) models for predicting 2-year visual acuity (VA) responses to anti-vascular endothelial growth factor (anti-VEGF) treatment in the Comparison of Age-related Macular Degeneration (AMD) Treatments Tria...

Deep-learning based automated quantification of critical optical coherence tomography features in neovascular age-related macular degeneration.

Eye (London, England)
PURPOSE: To validate a deep learning algorithm for automated intraretinal fluid (IRF), subretinal fluid (SRF) and neovascular pigment epithelium detachment (nPED) segmentations in neovascular age-related macular degeneration (nAMD).

Performance of retinal fluid monitoring in OCT imaging by automated deep learning versus human expert grading in neovascular AMD.

Eye (London, England)
PURPOSE: To evaluate the reliability of automated fluid detection in identifying retinal fluid activity in OCT scans of patients treated with anti-VEGF therapy for neovascular age-related macular degeneration by correlating human expert and automated...

KFWC: A Knowledge-Driven Deep Learning Model for Fine-grained Classification of Wet-AMD.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Automated diagnosis using deep neural networks can help ophthalmologists detect the blinding eye disease wet Age-related Macular Degeneration (AMD). Wet-AMD has two similar subtypes, Neovascular AMD and Polypoidal Choroidal...

Correlation of vascular and fluid-related parameters in neovascular age-related macular degeneration using deep learning.

Acta ophthalmologica
PURPOSE: To identify correlations between the vascular characteristics of macular neovascularization (MNV) obtained by optical coherence tomography angiography (OCTA) and distinct retinal fluid volumes in neovascular age-related macular degeneration ...

Therapeutic response in the HAWK and HARRIER trials using deep learning in retinal fluid volume and compartment analysis.

Eye (London, England)
OBJECTIVES: To assess the therapeutic response to brolucizumab and aflibercept by deep learning/OCT-based analysis of macular fluid volumes in neovascular age-related macular degeneration.