AIMC Topic: Angiogenesis Inhibitors

Clear Filters Showing 21 to 30 of 75 articles

Improved prediction of anti-angiogenic peptides based on machine learning models and comprehensive features from peptide sequences.

Scientific reports
Angiogenesis is a key process for the proliferation and metastatic spread of cancer cells. Anti-angiogenic peptides (AAPs), with the capability of inhibiting angiogenesis, are promising candidates in cancer treatment. We propose AAPL, a sequence-base...

Approved AI-based fluid monitoring to identify morphological and functional treatment outcomes in neovascular age-related macular degeneration in real-world routine.

The British journal of ophthalmology
AIM: To predict antivascular endothelial growth factor (VEGF) treatment requirements, visual acuity and morphological outcomes in neovascular age-related macular degeneration (nAMD) using fluid quantification by artificial intelligence (AI) in a real...

Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework.

Computers in biology and medicine
BACKGROUND: Angiogenesis plays a vital role in the pathogenesis of several human diseases, particularly in the case of solid tumors. In the realm of cancer treatment, recent investigations into peptides with anti-angiogenic properties have yielded en...

Suitability of machine learning for atrophy and fibrosis development in neovascular age-related macular degeneration.

Acta ophthalmologica
PURPOSE: To assess the suitability of machine learning (ML) techniques in predicting the development of fibrosis and atrophy in patients with neovascular age-related macular degeneration (nAMD), receiving anti-VEGF treatment over a 36-month period.

Preliminary analysis of predicting the first recurrence in patients with neovascular age-related macular degeneration using deep learning.

BMC ophthalmology
BACKGROUND: To predict, using deep learning, the first recurrence in patients with neovascular age-related macular degeneration (nAMD) after three monthly loading injections of intravitreal anti-vascular endothelial growth factor (anti-VEGF).

Predicting Visual Acuity Responses to Anti-VEGF Treatment in the Comparison of Age-related Macular Degeneration Treatments Trials Using Machine Learning.

Ophthalmology. Retina
PURPOSE: To evaluate multiple machine learning (ML) models for predicting 2-year visual acuity (VA) responses to anti-vascular endothelial growth factor (anti-VEGF) treatment in the Comparison of Age-related Macular Degeneration (AMD) Treatments Tria...

Deep-learning based automated quantification of critical optical coherence tomography features in neovascular age-related macular degeneration.

Eye (London, England)
PURPOSE: To validate a deep learning algorithm for automated intraretinal fluid (IRF), subretinal fluid (SRF) and neovascular pigment epithelium detachment (nPED) segmentations in neovascular age-related macular degeneration (nAMD).

Performance of retinal fluid monitoring in OCT imaging by automated deep learning versus human expert grading in neovascular AMD.

Eye (London, England)
PURPOSE: To evaluate the reliability of automated fluid detection in identifying retinal fluid activity in OCT scans of patients treated with anti-VEGF therapy for neovascular age-related macular degeneration by correlating human expert and automated...

KFWC: A Knowledge-Driven Deep Learning Model for Fine-grained Classification of Wet-AMD.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Automated diagnosis using deep neural networks can help ophthalmologists detect the blinding eye disease wet Age-related Macular Degeneration (AMD). Wet-AMD has two similar subtypes, Neovascular AMD and Polypoidal Choroidal...