AIMC Topic: Antitubercular Agents

Clear Filters Showing 31 to 40 of 65 articles

First-line drug resistance profiling of : a machine learning approach.

AMIA ... Annual Symposium proceedings. AMIA Symposium
The persistence and emergence of new multi-drug resistant Mycobacterium tuberculosis (M. tb) strains continues to advance the devastating tuberculosis (TB) epidemic. Robust systems are needed to accurately and rapidly perform drug-resistance profilin...

Accurate and rapid prediction of tuberculosis drug resistance from genome sequence data using traditional machine learning algorithms and CNN.

Scientific reports
Effective and timely antibiotic treatment depends on accurate and rapid in silico antimicrobial-resistant (AMR) predictions. Existing statistical rule-based Mycobacterium tuberculosis (MTB) drug resistance prediction methods using bacterial genomic s...

Mycobacterium abscessus drug discovery using machine learning.

Tuberculosis (Edinburgh, Scotland)
The prevalence of infections by nontuberculous mycobacteria is increasing, having surpassed tuberculosis in the United States and much of the developed world. Nontuberculous mycobacteria occur naturally in the environment and are a significant proble...

GenTB: A user-friendly genome-based predictor for tuberculosis resistance powered by machine learning.

Genome medicine
BACKGROUND: Multidrug-resistant Mycobacterium tuberculosis (Mtb) is a significant global public health threat. Genotypic resistance prediction from Mtb DNA sequences offers an alternative to laboratory-based drug-susceptibility testing. User-friendly...

Development and validation of consensus machine learning-based models for the prediction of novel small molecules as potential anti-tubercular agents.

Molecular diversity
Tuberculosis (TB) is an infectious disease and the leading cause of death globally. The rapidly emerging cases of drug resistance among pathogenic mycobacteria have been a global threat urging the need of new drug discovery and development. However, ...

Prediction of rifampicin resistance beyond the RRDR using structure-based machine learning approaches.

Scientific reports
Rifampicin resistance is a major therapeutic challenge, particularly in tuberculosis, leprosy, P. aeruginosa and S. aureus infections, where it develops via missense mutations in gene rpoB. Previously we have highlighted that these mutations reduce p...

A machine learning-based framework for Predicting Treatment Failure in tuberculosis: A case study of six countries.

Tuberculosis (Edinburgh, Scotland)
Tuberculosis is ranked as the 2nd deadliest disease in the world and is responsible for ten million deaths in 2017. Treatment failure is one of a main reason behind these deaths. Reasons of treatment failure are still unknown and the death rate due t...

Antitubercular metabolites from the marine-derived fungus strain MF029.

Natural product research
During the systematic screening of bioactive compounds from our marine natural product library, crude extract of the marine-derived fungus strain MF029 exhibited moderate bioactivities against , S, methicillin-resistant , and bacillus Calmette-Guér...