IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
39196740
Advancements in machine learning offer promising avenues for the identification of ADHD symptoms in adults, an endeavour traditionally encumbered by the intricacies of human behavioural patterns. In this paper, we introduce three innovative dual-stre...
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder that is characterized by inattention, hyperactivity, and impulsivity. The neural mechanisms underlying ADHD remain inadequately understood, and current approaches...
Attention deficit hyperactivity disorder (ADHD) is a common mental health condition that significantly affects school-age children, causing difficulties with learning and daily functioning. Early identification is crucial, and reliable and objective ...
BACKGROUND: We aimed to identify important features of white matter microstructures collectively distinguishing individuals with attention-deficit/hyperactivity disorder (ADHD) from those without ADHD using a machine-learning approach.
Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children. While numerous intelligent methods are applied for its subjective diagnosis, they seldom consider the consistency problem of ADHD biomarkers. In p...
Journal of imaging informatics in medicine
39028358
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by a reduced attention span, hyperactivity, and impulsive behaviors, which typically manifest during childhood. This study employs functional magnetic reso...
BACKGROUND: Attention-Deficit/Hyperactivity Disorder (ADHD) is a multifaceted neurodevelopmental psychiatric condition that typically emerges during childhood but often persists into adulthood, significantly impacting individuals' functioning, relati...
IEEE journal of biomedical and health informatics
39167518
Modeling functional brain networks (FBNs) for attention deficit hyperactivity disorder (ADHD) has sparked significant interest since the abnormal functional connectivity is discovered in certain functional magnetic resonance imaging (fMRI)-based brai...
Analysis of functional connectivity networks (FCNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has greatly advanced our understanding of brain diseases, including Alzheimer's disease (AD) and attention deficit hyperact...