AIMC Topic: Bacterial Proteins

Clear Filters Showing 71 to 80 of 176 articles

QSSR Modeling of Bacillus Subtilis Lipase A Peptide Collision Cross-Sections in Ion Mobility Spectrometry: Local Descriptor Versus Global Descriptor.

The protein journal
To investigate the structure-dependent peptide mobility behavior in ion mobility spectrometry (IMS), quantitative structure-spectrum relationship (QSSR) is systematically modeled and predicted for the collision cross section Ω values of totally 162 s...

Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome.

Nature communications
The transcriptional regulatory network (TRN) of Bacillus subtilis coordinates cellular functions of fundamental interest, including metabolism, biofilm formation, and sporulation. Here, we use unsupervised machine learning to modularize the transcrip...

Machine learning-based prediction of enzyme substrate scope: Application to bacterial nitrilases.

Proteins
Predicting the range of substrates accepted by an enzyme from its amino acid sequence is challenging. Although sequence- and structure-based annotation approaches are often accurate for predicting broad categories of substrate specificity, they gener...

Prediction of rifampicin resistance beyond the RRDR using structure-based machine learning approaches.

Scientific reports
Rifampicin resistance is a major therapeutic challenge, particularly in tuberculosis, leprosy, P. aeruginosa and S. aureus infections, where it develops via missense mutations in gene rpoB. Previously we have highlighted that these mutations reduce p...

Predicting Gram-Positive Bacterial Protein Subcellular Location by Using Combined Features.

BioMed research international
There are a lot of bacteria in the environment, and Gram-positive bacteria are the most common ones. Some Gram-positive bacteria are very harmful to the human body, so it is significant to predict Gram-positive bacterial protein subcellular location....

Signal Peptides Generated by Attention-Based Neural Networks.

ACS synthetic biology
Short (15-30 residue) chains of amino acids at the amino termini of expressed proteins known as signal peptides (SPs) specify secretion in living cells. We trained an attention-based neural network, the Transformer model, on data from all available o...

Photosynthetic protein classification using genome neighborhood-based machine learning feature.

Scientific reports
Identification of novel photosynthetic proteins is important for understanding and improving photosynthetic efficiency. Synergistically, genome neighborhood can provide additional useful information to identify photosynthetic proteins. We, therefore,...

ACNNT3: Attention-CNN Framework for Prediction of Sequence-Based Bacterial Type III Secreted Effectors.

Computational and mathematical methods in medicine
The type III secretion system (T3SS) is a special protein delivery system in Gram-negative bacteria which delivers T3SS-secreted effectors (T3SEs) to host cells causing pathological changes. Numerous experiments have verified that T3SEs play importan...