AIMC Topic: Brain-Computer Interfaces

Clear Filters Showing 21 to 30 of 649 articles

Brain-Computer Interface-controlled Upper Limb Robotic System for Enhancing Daily Activities in Stroke Patients.

Journal of visualized experiments : JoVE
This study introduces a Brain-Computer Interface (BCI)-controlled upper limb assistive robot for post-stroke rehabilitation. The system utilizes electroencephalogram (EEG) and electrooculogram (EOG) signals to help users assist upper limb function in...

Integrative neurorehabilitation using brain-computer interface: From motor function to mental health after stroke.

Bioscience trends
Stroke remains a leading cause of mortality and long-term disability worldwide, frequently resulting in impairments in motor control, cognition, and emotional regulation. Conventional rehabilitation approaches, while partially effective, often lack i...

Improved performance of fNIRS-BCI by stacking of deep learning-derived frequency domain features.

PloS one
The functional near-infrared spectroscopy-based brain-computer interface (fNIRS-BCI) systems recognize patterns in brain signals and generate control commands, thereby enabling individuals with motor disabilities to regain autonomy. In this study han...

Multi-scale convolutional transformer network for motor imagery brain-computer interface.

Scientific reports
Brain-computer interface (BCI) systems allow users to communicate with external devices by translating neural signals into real-time commands. Convolutional neural networks (CNNs) have been effectively utilized for decoding motor imagery electroencep...

Exploring cortical excitability in children with cerebral palsy through lower limb robot training based on MI-BCI.

Scientific reports
This study aims to compare brain activity differences under the motor imagery-brain-computer interface (MI-BCI), motor imagery (MI), and resting (REST) paradigms through EEG microstate and functional connectivity (FC) analysis, providing a theoretica...

Decoding SSVEP Via Calibration-Free TFA-Net: A Novel Network Using Time-Frequency Features.

IEEE journal of biomedical and health informatics
Brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) signals offer high information transfer rates and non-invasive brain-to-device connectivity, making them highly practical. In recent years, deep learning technique...

DC-ASTGCN: EEG Emotion Recognition Based on Fusion Deep Convolutional and Adaptive Spatio-Temporal Graph Convolutional Networks.

IEEE journal of biomedical and health informatics
Thanks to advancements in artificial intelligence and brain-computer interface (BCI) research, there has been increasing attention towards emotion recognition techniques based on electroencephalogram (EEG) recently. The complexity of EEG data poses a...

LGFormer: integrating local and global representations for EEG decoding.

Journal of neural engineering
Electroencephalography (EEG) decoding is challenging because of its temporal variability and low signal-to-noise ratio, which complicate the extraction of meaningful information from signals. Although convolutional neural networks (CNNs) effectively ...

A Deep-Learning Empowered, Real-Time Processing Platform of fNIRS/DOT for Brain Computer Interfaces and Neurofeedback.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Brain-Computer Interfaces (BCI) and Neurofeedback (NFB) approaches, which both rely on real-time monitoring of brain activity, are increasingly being applied in rehabilitation, assistive technology, neurological diseases and behavioral disorders. Fun...

Shared autonomy between human electroencephalography and TD3 deep reinforcement learning: A multi-agent copilot approach.

Annals of the New York Academy of Sciences
Deep reinforcement learning (RL) algorithms enable the development of fully autonomous agents that can interact with the environment. Brain-computer interface (BCI) systems decipher human implicit brain signals regardless of the explicit environment....