IEEE transactions on neural networks and learning systems
Sep 3, 2024
Semantic comprehension aims to reasonably reproduce people's real intentions or thoughts, e.g., sentiment, humor, sarcasm, motivation, and offensiveness, from multiple modalities. It can be instantiated as a multimodal-oriented multitask classificati...
Inferences made about objects via vision, such as rapid and accurate categorization, are core to primate cognition despite the algorithmic challenge posed by varying viewpoints and scenes. Until recently, the brain mechanisms that support these capab...
PURPOSE: Ultrashort echo time (UTE) MRI can be a radiation-free alternative to CT for craniofacial imaging of pediatric patients. However, unlike CT, bone-specific MR imaging is limited by long scan times, relatively low spatial resolution, and a tim...
The collection of head images for public datasets in the field of brain science has grown remarkably in recent years, underscoring the need for robust de-identification methods to adhere with privacy regulations. This paper elucidates a novel deep le...
OBJECTIVE: To compare compressed sensing (CS) and the Cascades of Independently Recurrent Inference Machines (CIRIM) with respect to image quality and reconstruction times when 12-fold accelerated scans of patients with neurological deficits are reco...
Brain-computer interface (BCI) technology bridges the direct communication between the brain and machines, unlocking new possibilities for human interaction and rehabilitation. EEG-based motor imagery (MI) plays a pivotal role in BCI, enabling the tr...
OBJECTIVE: Despite the prevalent use of the general linear model (GLM) in fMRI data analysis, assuming a pre-defined hemodynamic response function (HRF) for all voxels can lead to reduced reliability and may distort the inferences derived from it. To...
OBJECT: Deep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw data is not always available in sufficient quantities. This study investigates synthetic da...
Neural networks : the official journal of the International Neural Network Society
Aug 28, 2024
In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.