AIMC Topic: Breast

Clear Filters Showing 1 to 10 of 594 articles

Multi-site validation of an interpretable model to analyze breast masses.

PloS one
An external validation of IAIA-BL-a deep-learning based, inherently interpretable breast lesion malignancy prediction model-was performed on two patient populations: 207 women ages 31 to 96, (425 mammograms) from iCAD, and 58 women (104 mammograms) f...

Exploratory multi-cohort, multi-reader study on the clinical utility of a deep learning model for transforming cryosectioned to formalin-fixed, paraffin-embedded (FFPE) images in breast lesion diagnosis.

Breast cancer research : BCR
BACKGROUND: Cryosectioned tissues often exhibit artifacts that compromise pathologists' diagnostic accuracy during intraoperative assessments. These inconsistencies, compounded by variations in frozen section (FS) production across laboratories, high...

Application Value of Deep Learning-Based AI Model in the Classification of Breast Nodules.

British journal of hospital medicine (London, England : 2005)
Breast nodules are highly prevalent among women, and ultrasound is a widely used screening tool. However, single ultrasound examinations often result in high false-positive rates, leading to unnecessary biopsies. Artificial intelligence (AI) has dem...

Improving cancer detection through computer-aided diagnosis: A comprehensive analysis of nonlinear and texture features in breast thermograms.

PloS one
Breast cancer is a significant health issue for women, characterized by its high rates of mortality and sickness. However, its early detection is crucial for improving patient outcomes. Thermography, which measures temperature variations between heal...

AI-assisted diffuse correlation tomography for identifying breast cancer.

Journal of biomedical optics
SIGNIFICANCE: Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validate...

BentRay-NeRF: Bent-Ray Neural Radiance Fields for Robust Speed-of-Sound Imaging in Ultrasound Computed Tomography.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Ultrasound computed tomography (USCT) is a promising technique for breast cancer detection because of its quantitative imaging capability of the speed of sound (SOS) of soft tissues and the fact that malignant breast lesions often have a higher SOS c...

Supervised Information Mining From Weakly Paired Images for Breast IHC Virtual Staining.

IEEE transactions on medical imaging
Immunohistochemistry (IHC) examination is essential to determine the tumour subtypes, provide key prognostic factors, and develop personalized treatment plans for breast cancer. However, compared to Hematoxylin and Eosin (H&E) staining, the preparati...

Variational mode directed deep learning framework for breast lesion classification using ultrasound imaging.

Scientific reports
Breast cancer is the most prevalent cancer and the second cause of cancer related death among women in the United States. Accurate and early detection of breast cancer can reduce the number of mortalities. Recent works explore deep learning technique...

EfficientNet-Based Attention Residual U-Net With Guided Loss for Breast Tumor Segmentation in Ultrasound Images.

Ultrasound in medicine & biology
OBJECTIVE: Breast cancer poses a major health concern for women globally. Effective segmentation of breast tumors for ultrasound images is crucial for early diagnosis and treatment. Conventional convolutional neural networks have shown promising resu...

Using artificial intelligence system for assisting the classification of breast ultrasound glandular tissue components in dense breast tissue.

Scientific reports
To investigate the potential of employing artificial intelligence (AI) -driven breast ultrasound analysis models for the classification of glandular tissue components (GTC) in dense breast tissue. A total of 1,848 healthy women with mammograms classi...