Early prognostication of patient outcomes in intracerebral hemorrhage (ICH) is critical for patient care. We aim to investigate protein biomarkers' role in prognosticating outcomes in ICH patients. We assessed 22 protein biomarkers using targeted pro...
BACKGROUND AND PURPOSE: Intracranial hemorrhage (ICH) in leukemia patients progresses rapidly with high mortality. Limited data are available on imaging studies in this population. The study aims to develop prediction models for 7-day and short-term ...
This study aimed to develop a machine learning (ML)-based tool for early and accurate prediction of in-hospital mortality risk in patients with spontaneous intracerebral hemorrhage (sICH) in the intensive care unit (ICU). We did a retrospective study...
BACKGROUND: Predicting functional impairment after intracerebral hemorrhage (ICH) provides valuable information for planning of patient care and rehabilitation strategies. Current prognostic tools are limited in making long term predictions and requi...
BACKGROUND: Increased oxidative stress (OS) activity following intracerebral hemorrhage (ICH) had significantly impacting patient prognosis. Identifying optimal genes associated with OS could enhance the understanding of OS after ICH.
PURPOSE: Early identification of hematoma enlargement and persistent hematoma expansion (HE) in patients with cerebral hemorrhage is increasingly crucial for determining clinical treatments. However, due to the lack of clinically effective tools, rad...
BACKGROUND: Pneumonia is one of the most common complications after spontaneous intracerebral hemorrhage (sICH), i.e., stroke-associated pneumonia (SAP). Timely identification of targeted patients is beneficial to reduce poor prognosis. So far, there...
Neural networks : the official journal of the International Neural Network Society
39003984
Segmentation and the subsequent quantitative assessment of the target object in computed tomography (CT) images provide valuable information for the analysis of intracerebral hemorrhage (ICH) pathology. However, most existing methods lack a reasonabl...
OBJECTIVES: To develop and validate a novel interpretable artificial intelligence (AI) model that integrates radiomic features, deep learning features, and imaging features at multiple semantic levels to predict the prognosis of intracerebral hemorrh...
RATIONALE AND OBJECTIVE: Stroke-associated pneumonia (SAP) often appears as a complication following intracerebral hemorrhage (ICH), leading to poor prognosis and increased mortality rates. Previous studies have typically developed prediction models ...