Deep learning methods are increasingly popular in assisting physicians with diagnosing coronary artery disease and reducing errors caused by subjective judgment. However, accessing and labeling medical imaging data, especially coronary angiography da...
The international journal of cardiovascular imaging
39875702
Artificial intelligence-based quantitative coronary angiography (AI-QCA) was introduced to address manual QCA's limitations in reproducibility and correction process. The present study aimed to assess the performance of an updated AI-QCA solution (MP...
BACKGROUND: Visual assessment of coronary CT angiography (CCTA) is time-consuming, influenced by reader experience and prone to interobserver variability. This study evaluated a novel algorithm for coronary stenosis quantification (atherosclerosis im...
PURPOSE: We examined whether end-to-end deep-learning models could detect moderate (≥50%) or severe (≥70%) stenosis in the left anterior descending artery (LAD), right coronary artery (RCA) or left circumflex artery (LCX) in iodine contrast-enhanced ...
OBJECTIVES: The use of deep learning models for quantitative measurements on coronary computed tomography angiography (CCTA) may reduce inter-reader variability and increase efficiency in clinical reporting. This study aimed to investigate the diagno...
The international journal of cardiovascular imaging
39789341
The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consumin...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
40081144
BACKGROUND AND OBJECTIVE: Coronary artery disease (CAD), the leading cause of mortality, is caused by atherosclerotic plaque buildup in the arteries. The gold standard for the diagnosis of CAD is via X-ray coronary angiography (XCA) during percutaneo...
To analyze radiomics features of cardiac adipose tissue in individuals with type 2 diabetes (T2DM) and non-alcoholic fatty liver disease (NAFLD), integrating relevant clinical indicators, and employing machine learning techniques to construct a preci...
Journal of cardiovascular computed tomography
39988511
BACKGROUND: As a new noninvasive diagnostic technique, computed tomography-derived fraction flow reserve (FFRCT) has been used to identify hemodynamically significant coronary artery stenosis. FFRCT can be calculated using computational fluid dynamic...
BACKGROUND: Exclusion of coronary stenosis in individuals with suggestive symptoms is challenging. Cardiac CT or coronary angiography is often used but is inefficient and costly and involves risks. Sex-stratified algorithms based on electronic health...