OBJECTIVES: To assess the accuracy of ChatGPT-4 Omni (GPT-4o) in biomedical statistics. The recent novel inauguration of Artificial Intelligence ChatGPT-Omni (GPT-4o), has emerged with the potential to analyze sophisticated and extensive data sets, c...
Artificial intelligence (AI) models often face performance drops after deployment to external datasets. This study evaluated the potential of a novel data augmentation framework based on generative adversarial networks (GANs) that creates synthetic p...
An increasing number of recent studies have suggested that doubly robust estimators with cross-fitting should be used when estimating causal effects with machine learning methods. However, not all existing programs that implement doubly robust estima...
Machine learning is gaining prominence in the health sciences, where much of its use has focused on data-driven prediction. However, machine learning can also be embedded within causal analyses, potentially reducing biases arising from model misspeci...
Methods in molecular biology (Clifton, N.J.)
Jan 1, 2021
When obtaining high-throughput data from antibody arrays, researchers have to face a couple of questions: How and by what means can they get reasonable results significant to their research from these data? Similar to a gene microarray, the classical...
PURPOSE OF REVIEW: The use of artificial intelligence (AI) in ophthalmology has increased dramatically. However, interpretation of these studies can be a daunting prospect for the ophthalmologist without a background in computer or data science. This...
PURPOSE OF REVIEW: The goal of this article is to review the use of machine learning (ML) within studies of environmental exposures and children's health, identify common themes across studies, and provide recommendations to advance their use in rese...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.