AIMC Topic: Databases, Pharmaceutical

Clear Filters Showing 41 to 50 of 96 articles

Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.

International journal of molecular sciences
Human immunodeficiency virus type-1 and hepatitis C virus (HIV/HCV) coinfection occurs when a patient is simultaneously infected with both human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV), which is common today in certain popul...

DrugR+: A comprehensive relational database for drug repurposing, combination therapy, and replacement therapy.

Computers in biology and medicine
Drug repurposing or repositioning, which introduces new applications of the existing drugs, is an emerging field in drug discovery scope. To enhance the success rate of the research and development (R&D) process in a cost- and time-effective manner, ...

Building the drug-GO function network to screen significant candidate drugs for myasthenia gravis.

PloS one
Myasthenia gravis (MG) is an autoimmune disease. In recent years, considerable evidence has indicated that Gene Ontology (GO) functions, especially GO-biological processes, have important effects on the mechanisms and treatments of different diseases...

Deep Learning and Random Forest Approach for Finding the Optimal Traditional Chinese Medicine Formula for Treatment of Alzheimer's Disease.

Journal of chemical information and modeling
It has demonstrated that glycogen synthase kinase 3β (GSK3β) is related to Alzheimer's disease (AD). On the basis of the world largest traditional Chinese medicine (TCM) database, a network-pharmacology-based approach was utilized to investigate TCM ...

Classification of Cyclooxygenase-2 Inhibitors Using Support Vector Machine and Random Forest Methods.

Journal of chemical information and modeling
This work reports the classification study conducted on the biggest COX-2 inhibitor data set so far. Using 2925 diverse COX-2 inhibitors collected from 168 pieces of literature, we applied machine learning methods, support vector machine (SVM) and ra...

Imputation of Assay Bioactivity Data Using Deep Learning.

Journal of chemical information and modeling
We describe a novel deep learning neural network method and its application to impute assay pIC values. Unlike conventional machine learning approaches, this method is trained on sparse bioactivity data as input, typical of that found in public and c...

Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification.

Journal of chemical information and modeling
Chemical synthesis planning is a key aspect in many fields of chemistry, especially drug discovery. Recent implementations of machine learning and artificial intelligence techniques for retrosynthetic analysis have shown great potential to improve co...

Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.

Journal of chemical information and modeling
Assay interference caused by small molecules continues to pose a significant challenge for early drug discovery. A number of rule-based and similarity-based approaches have been derived that allow the flagging of potentially "badly behaving compounds...

Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets.

Journal of chemical information and modeling
Successful drug discovery projects require control and optimization of compound properties related to pharmacokinetics, pharmacodynamics, and safety. While volume and chemotype coverage of public and corporate ADME-Tox (absorption, distribution, excr...