AIMC Topic: Disease Outbreaks

Clear Filters Showing 11 to 20 of 142 articles

A novel graph neural network based approach for influenza-like illness nowcasting: exploring the interplay of temporal, geographical, and functional spatial features.

BMC public health
BACKGROUND: Accurate and timely monitoring of influenza prevalence is essential for effective healthcare interventions. This study proposes a graph neural network (GNN)-based method to address the issue of cross-regional connectivity in predicting in...

Machine learning reveals the dynamic importance of accessory sequences for outbreak clustering.

mBio
UNLABELLED: Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the vari...

Machine learning models provide modest accuracy in predicting clinical impact of porcine reproductive and respiratory syndrome type 2 in Canadian sow herds.

American journal of veterinary research
OBJECTIVE: To determine the predictive potential of the open reading frame 5 nucleotide sequence of porcine reproductive and respiratory syndrome (PRRS) virus and the basic demographic data on the severity of the impact on selected production paramet...

Multi-region infectious disease prediction modeling based on spatio-temporal graph neural network and the dynamic model.

PLoS computational biology
Human mobility between different regions is a major factor in large-scale outbreaks of infectious diseases. Deep learning models incorporating infectious disease transmission dynamics for predicting the spread of multi-regional outbreaks due to human...

Leveraging AHP and transfer learning in machine learning for improved prediction of infectious disease outbreaks.

Scientific reports
Infectious diseases significantly impact both public health and economic stability, underscoring the critical need for precise outbreak predictions to effictively mitigate their impact. This study applies advanced machine learning techniques to forec...

Potato Late Blight Outbreak: A Study on Advanced Classification Models Based on Meteorological Data.

Sensors (Basel, Switzerland)
While past research has emphasized the importance of late blight infection detection and classification, anticipating the potato late blight infection is crucial from the economic point of view as it helps to significantly reduce the production cost....

Deep neural networks for endemic measles dynamics: Comparative analysis and integration with mechanistic models.

PLoS computational biology
Measles is an important infectious disease system both for its burden on public health and as an opportunity for studying nonlinear spatio-temporal disease dynamics. Traditional mechanistic models often struggle to fully capture the complex nonlinear...

The fuzzy system ensembles entomological, epidemiological, demographic and environmental data to unravel the dengue transmission risk in an endemic city.

BMC public health
BACKGROUND: The effectiveness of dengue control interventions depends on an effective integrated surveillance system that involves analysis of multiple variables associated with the natural history and transmission dynamics of this arbovirus. Entomol...

Geospatial and Temporal Analysis of Avian Influenza Risk in Thailand: A GIS-Based Multi-Criteria Decision Analysis Approach for Enhanced Surveillance and Control.

Transboundary and emerging diseases
Avian influenza (AI) is a viral infection that profoundly affects global poultry production. This study aimed to identify the spatial and temporal factors associated with AI in Thailand, using a geographic information system (GIS)-based multi-criteri...

Prediction of measles cases in US counties: A machine learning approach.

Vaccine
BACKGROUND: Although measles was declared eliminated from the United States in 2000, the frequency of measles outbreaks has increased in recent years. The ability to predict the locations of future cases could aid efforts to prevent and contain measl...