Acute coronary syndrome (ACS) is a leading cause of death worldwide. Prompt and accurate diagnosis of acute myocardial infarction (AMI) or ACS is crucial for improved management and prognosis of patients. The rapid growth of machine learning (ML) res...
BACKGROUND: Atrial Fibrillation (AF) is the most common form of arrhythmia in the world with a prevalence of 1%-2%. AF is also associated with an increased risk of cardiovascular diseases (CVD), such as stroke, heart failure, and coronary artery dise...
Myocardial infarction (MI) is a life-threatening medical condition that necessitates both timely and precise diagnosis. The enhancement of automated method to detect MI diseases from Normal patients can play a crucial role in healthcare. This paper p...
International journal of medical informatics
Dec 1, 2024
BACKGROUND: The 12-lead electrocardiogram (ECG) is an established modality for cardiovascular assessment. While deep learning algorithms have shown promising results for analyzing ECG data, the limited availability of labeled datasets hinders broader...
Detecting early stages of cardiovascular disease from short-duration Electrocardiogram (ECG) signals is challenging. However, long-duration ECG data are susceptible to various types of noise during acquisition. To tackle the problem, Subspace Search ...
AIMS: Through a simple machine learning approach, we aimed to assess the risk of all-cause mortality after 5 years in a European population, based on electrocardiogram (ECG) parameters, age, and sex.
Artificial intelligence-enhanced electrocardiography (AI-ECG) can identify hypertrophic cardiomyopathy (HCM) on 12-lead ECGs and offers a novel way to monitor treatment response. Although the surgical or percutaneous reduction of the interventricular...
BMC medical informatics and decision making
Nov 22, 2024
BACKGROUND: Patients with severe coronary arterystenosis may present with apparently normal electrocardiograms (ECGs), making it difficult to detect adverse health conditions during routine screenings or physical examinations. Consequently, these pat...
Feedback on cognitive workload may reduce decision-making mistakes. Machine learning-based models can produce feedback from physiological data such as electroencephalography (EEG) and electrocardiography (ECG). Supervised machine learning requires la...
In the era of Industry 4.0, the study of Human-Robot Collaboration (HRC) in advancing modern manufacturing and automation is paramount. An operator approaching a collaborative robot (cobot) may have feelings of distrust, and experience discomfort and...