AIMC Topic: Enhancer Elements, Genetic

Clear Filters Showing 61 to 70 of 75 articles

Supervised learning of enhancer-promoter specificity based on genome-wide perturbation studies highlights areas for improvement in learning.

Bioinformatics (Oxford, England)
MOTIVATION: Understanding the rules that govern enhancer-driven transcription remains a central unsolved problem in genomics. Now with multiple massively parallel enhancer perturbation assays published, there are enough data that we can utilize to le...

Enhancer-MDLF: a novel deep learning framework for identifying cell-specific enhancers.

Briefings in bioinformatics
Enhancers, noncoding DNA fragments, play a pivotal role in gene regulation, facilitating gene transcription. Identifying enhancers is crucial for understanding genomic regulatory mechanisms, pinpointing key elements and investigating networks governi...

HEAP: a task adaptive-based explainable deep learning framework for enhancer activity prediction.

Briefings in bioinformatics
Enhancers are crucial cis-regulatory elements that control gene expression in a cell-type-specific manner. Despite extensive genetic and computational studies, accurately predicting enhancer activity in different cell types remains a challenge, and t...

DeepITEH: a deep learning framework for identifying tissue-specific eRNAs from the human genome.

Bioinformatics (Oxford, England)
MOTIVATION: Enhancers are vital cis-regulatory elements that regulate gene expression. Enhancer RNAs (eRNAs), a type of long noncoding RNAs, are transcribed from enhancer regions in the genome. The tissue-specific expression of eRNAs is crucial in th...

Analysis of super-enhancer using machine learning and its application to medical biology.

Briefings in bioinformatics
The analysis of super-enhancers (SEs) has recently attracted attention in elucidating the molecular mechanisms of cancer and other diseases. SEs are genomic structures that strongly induce gene expression and have been reported to contribute to the o...

Deciphering the regulatory syntax of genomic DNA with deep learning.

Journal of biosciences
An organism's genome contains many sequence regions that perform diverse functions. Examples of such regions include genes, promoters, enhancers, and binding sites for regulatory proteins and RNAs. One of biology's most important open problems is how...

Integrative machine learning framework for the identification of cell-specific enhancers from the human genome.

Briefings in bioinformatics
Enhancers are deoxyribonucleic acid (DNA) fragments which when bound by transcription factors enhance the transcription of related genes. Due to its sporadic distribution and similar fractions, identification of enhancers from the human genome seems ...

Deciphering enhancer sequence using thermodynamics-based models and convolutional neural networks.

Nucleic acids research
Deciphering the sequence-function relationship encoded in enhancers holds the key to interpreting non-coding variants and understanding mechanisms of transcriptomic variation. Several quantitative models exist for predicting enhancer function and und...

iDHS-Deep: an integrated tool for predicting DNase I hypersensitive sites by deep neural network.

Briefings in bioinformatics
DNase I hypersensitive site (DHS) refers to the hypersensitive region of chromatin for the DNase I enzyme. It is an important part of the noncoding region and contains a variety of regulatory elements, such as promoter, enhancer, and transcription fa...