MOTIVATION: Understanding the rules that govern enhancer-driven transcription remains a central unsolved problem in genomics. Now with multiple massively parallel enhancer perturbation assays published, there are enough data that we can utilize to le...
Enhancers, noncoding DNA fragments, play a pivotal role in gene regulation, facilitating gene transcription. Identifying enhancers is crucial for understanding genomic regulatory mechanisms, pinpointing key elements and investigating networks governi...
Enhancers are crucial cis-regulatory elements that control gene expression in a cell-type-specific manner. Despite extensive genetic and computational studies, accurately predicting enhancer activity in different cell types remains a challenge, and t...
MOTIVATION: Enhancers are vital cis-regulatory elements that regulate gene expression. Enhancer RNAs (eRNAs), a type of long noncoding RNAs, are transcribed from enhancer regions in the genome. The tissue-specific expression of eRNAs is crucial in th...
The analysis of super-enhancers (SEs) has recently attracted attention in elucidating the molecular mechanisms of cancer and other diseases. SEs are genomic structures that strongly induce gene expression and have been reported to contribute to the o...
Previous studies on enhancers and their target genes were largely based on bulk samples that represent 'average' regulatory activities from a large population of millions of cells, masking the heterogeneity and important effects from the sub-populati...
An organism's genome contains many sequence regions that perform diverse functions. Examples of such regions include genes, promoters, enhancers, and binding sites for regulatory proteins and RNAs. One of biology's most important open problems is how...
Enhancers are deoxyribonucleic acid (DNA) fragments which when bound by transcription factors enhance the transcription of related genes. Due to its sporadic distribution and similar fractions, identification of enhancers from the human genome seems ...
Deciphering the sequence-function relationship encoded in enhancers holds the key to interpreting non-coding variants and understanding mechanisms of transcriptomic variation. Several quantitative models exist for predicting enhancer function and und...
DNase I hypersensitive site (DHS) refers to the hypersensitive region of chromatin for the DNase I enzyme. It is an important part of the noncoding region and contains a variety of regulatory elements, such as promoter, enhancer, and transcription fa...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.