AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Ethiopia

Showing 11 to 20 of 40 articles

Clear Filters

Assessing fecal contamination from human and environmental sources using as an indicator in rural eastern Ethiopian households-a cross-sectional study from the EXCAM project.

Frontiers in public health
INTRODUCTION: Enteric pathogens are a leading causes of diarrheal deaths in low-and middle-income countries. The Exposure Assessment of Infections in Rural Ethiopia (EXCAM) project, aims to identify potential sources of bacteria in the genus and, m...

Optimizing hypertension prediction using ensemble learning approaches.

PloS one
Hypertension (HTN) prediction is critical for effective preventive healthcare strategies. This study investigates how well ensemble learning techniques work to increase the accuracy of HTN prediction models. Utilizing a dataset of 612 participants fr...

Prediction of acute respiratory infections using machine learning techniques in Amhara Region, Ethiopia.

Scientific reports
Many studies have shown that infectious diseases are responsible for the majority of deaths in children under five. Among these children, Acute Respiratory Infections is the most prevalent illness and cause of death worldwide. Acute respiratory infec...

Machine learning algorithms for prediction of measles one vaccination dropout among 12-23 months children in Ethiopia.

BMJ open
INTRODUCTION: Despite the availability of a safe and effective measles vaccine in Ethiopia, the country has experienced recurrent and significant measles outbreaks, with a nearly fivefold increase in confirmed cases from 2021 to 2023. The WHO has ide...

Public opinion mining in social media about Ethiopian broadcasts using deep learning.

Scientific reports
Now adays people express and share their opinions on various events on the internet thanks to social media. Opinion mining is the process of interpreting user-generated opinion data on social media. Aside from its lack of resources in opinion-mining ...

Leveraging machine learning models for anemia severity detection among pregnant women following ANC: Ethiopian context.

BMC public health
BACKGROUND: Anemia during pregnancy is a significant public health concern, particularly in resource-limited settings. Machine learning (ML) offers promising avenues for improved anemia detection and management. This study investigates the potential ...

Prediction of stunting and its socioeconomic determinants among adolescent girls in Ethiopia using machine learning algorithms.

PloS one
BACKGROUND: Stunting is a vital indicator of chronic undernutrition that reveals a failure to reach linear growth. Investigating growth and nutrition status during adolescence, in addition to infancy and childhood is very crucial. However, the availa...

The application of machine learning approaches to classify and predict fertility rate in Ethiopia.

Scientific reports
Integrating machine learning (ML) models into healthcare systems is a rapidly evolving field with the potential to revolutionize care delivery. This study aimed to classify fertility rates and identify significant predictors using ML models among rep...

Developing clinical prognostic models to predict graft survival after renal transplantation: comparison of statistical and machine learning models.

BMC medical informatics and decision making
INTRODUCTION: Renal transplantation is a critical treatment for end-stage renal disease, but graft failure remains a significant concern. Accurate prediction of graft survival is crucial to identify high-risk patients. This study aimed to develop pro...