AIMC Topic: Graft Survival

Clear Filters Showing 1 to 10 of 53 articles

Urinary biomarkers of kidney transplant rejection.

Current opinion in organ transplantation
PURPOSE OF REVIEW: Despite the introduction of many new immunosuppressive medications, allograft rejection remains a significant complication in transplantation. The use of "liquid biopsy" to evaluate allograft function and detect early rejection has...

Advanced prognostic modeling with deep learning: assessing long-term outcomes in liver transplant recipients from deceased and living donors.

Journal of translational medicine
BACKGROUND: Predicting long-term outcomes in liver transplantation remain a challenging endeavor. This research aims to harness the power of deep learning to develop an advanced prognostic model for assessing long-term outcomes, with a specific focus...

Developing approaches to incorporate donor-lung computed tomography images into machine learning models to predict severe primary graft dysfunction after lung transplantation.

American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons
Primary graft dysfunction (PGD) is a common complication after lung transplantation associated with poor outcomes. Although risk factors have been identified, the complex interactions between clinical variables affecting PGD risk are not well underst...

Developing clinical prognostic models to predict graft survival after renal transplantation: comparison of statistical and machine learning models.

BMC medical informatics and decision making
INTRODUCTION: Renal transplantation is a critical treatment for end-stage renal disease, but graft failure remains a significant concern. Accurate prediction of graft survival is crucial to identify high-risk patients. This study aimed to develop pro...

Artificial intelligence assisted risk prediction in organ transplantation: a UK Live-Donor Kidney Transplant Outcome Prediction tool.

Renal failure
Predicting the outcome of a kidney transplant involving a living donor advances donor decision-making donors for clinicians and patients. However, the discriminative or calibration capacity of the currently employed models are limited. We set out to...

Assessing donor kidney function: the role of CIRBP in predicting delayed graft function post-transplant.

Frontiers in immunology
INTRODUCTION: Delayed graft function (DGF) shortens the survival time of transplanted kidneys and increases the risk of rejection. Current methods are inadequate in predicting DGF. More precise tools are required to assess kidney suitability for tran...

Machine Learning Algorithms in Controlled Donation After Circulatory Death Under Normothermic Regional Perfusion: A Graft Survival Prediction Model.

Transplantation
BACKGROUND: Several scores have been developed to stratify the risk of graft loss in controlled donation after circulatory death (cDCD). However, their performance is unsatisfactory in the Spanish population, where most cDCD livers are recovered usin...

Deciphering the impact of senescence in kidney transplant rejection: An integrative machine learning and multi-omics analysis via bulk and single-cell RNA sequencing.

PloS one
BACKGROUND: The demographic shift towards an older population presents significant challenges for kidney transplantation (KTx), particularly due to the vulnerability of aged donor kidneys to ischemic damage, delayed graft function, and reduced graft ...

Predicting prognostic factors in kidney transplantation using a machine learning approach to enhance outcome predictions: a retrospective cohort study.

International journal of surgery (London, England)
BACKGROUND: Accurate forecasting of clinical outcomes after kidney transplantation is essential for improving patient care and increasing the success rates of transplants. The authors' study employs advanced machine learning (ML) algorithms to identi...