AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Nutritional Status

Showing 1 to 10 of 71 articles

Clear Filters

Unlocking insights: Using machine learning to identify wasting and risk factors in Egyptian children under 5.

Nutrition (Burbank, Los Angeles County, Calif.)
INTRODUCTION: Malnutrition, particularly wasting, continues to be a significant public health issue among children under five years in Egypt. Despite global advancements in child health, the prevalence of wasting remains a critical concern. This stud...

A neural network integrated mathematical model to analyze the impact of nutritional status on cognitive development of child.

Computers in biology and medicine
Cognitive development is a crucial developmental aspect of children. It is a concise field of study in psychology and neuroscience that focuses on various developmental aspects of the brain. Among all other factors, nutritional status is believed to ...

Nutritional predictors of lymphatic filariasis progression: Insights from a machine learning approach.

PloS one
Lymphatic filariasis (LF) is a mosquito-borne neglected tropical disease that causes disfiguring of the affected extremities, often leading to permanent disability and stigma. Described as a disease of poverty, the impact of socioeconomic indicators ...

Machine Learning Analysis of Nutrient Associations with Peripheral Arterial Disease: Insights from NHANES 1999-2004.

Annals of vascular surgery
BACKGROUND: Peripheral arterial disease (PAD) is a common manifestation of atherosclerosis, affecting over 200 million people worldwide. The incidence of PAD is increasing due to the aging population. Common risk factors include smoking, diabetes, an...

Prediction of stunting and its socioeconomic determinants among adolescent girls in Ethiopia using machine learning algorithms.

PloS one
BACKGROUND: Stunting is a vital indicator of chronic undernutrition that reveals a failure to reach linear growth. Investigating growth and nutrition status during adolescence, in addition to infancy and childhood is very crucial. However, the availa...

Prognosis modelling of adverse events for post-PCI treated AMI patients based on inflammation and nutrition indexes.

BMC cardiovascular disorders
OBJECTIVE: This study aimed to evaluate the predictive performance of inflammatory and nutritional indices for adverse cardiovascular events (ACE) in patients with acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI) using...

Investigation and Assessment of AI's Role in Nutrition-An Updated Narrative Review of the Evidence.

Nutrients
BACKGROUND: Artificial Intelligence (AI) technologies are now essential as the agenda of nutrition research expands its scope to look at the intricate connection between food and health in both an individual and a community context. AI also helps in ...

Role of artificial intelligence in predicting disease-related malnutrition - A narrative review.

Nutricion hospitalaria
Background: disease-related malnutrition (DRM) affects 30-50 % of hospitalized patients and is often underdiagnosed, increasing risks of complications and healthcare costs. Traditional DRM detection has relied on manual methods that lack accuracy and...

Advancing Nutritional Status Classification With Hybrid Artificial Intelligence: A Novel Methodological Approach.

Brain and behavior
PURPOSE: Malnutrition remains a critical public health issue in low-income countries, significantly hindering economic development and contributing to over 50% of infant deaths. Under nutrition weakens immune systems, increasing susceptibility to com...