Cross-species comparative analyses of single-cell RNA sequencing (scRNA-seq) data allow us to explore, at single-cell resolution, the origins of the cellular diversity and evolutionary mechanisms that shape cellular form and function. Cell-type assig...
N4-methylcytosine (4mC) is an important epigenetic mechanism, which regulates many cellular processes such as cell differentiation and gene expression. The knowledge about the 4mC sites is a key foundation to exploring its roles. Due to the limitatio...
DNA and RNA sequencing technologies have revolutionized biology and biomedical sciences, sequencing full genomes and transcriptomes at very high speeds and reasonably low costs. RNA sequencing (RNA-Seq) enables transcript identification and quantific...
Determining the pathogenicity and functional impact (i.e. gain-of-function; GOF or loss-of-function; LOF) of a variant is vital for unraveling the genetic level mechanisms of human diseases. To provide a 'one-stop' framework for the accurate identifi...
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling ...
Trypanosomatids are protozoan parasites that cause human and animal neglected diseases. Despite global efforts, effective treatments are still much needed. Phenotypic screens have provided several chemical leads for drug discovery, but the mechanism ...
Identifying the function of DNA sequences accurately is an essential and challenging task in the genomic field. Until now, deep learning has been widely used in the functional analysis of DNA sequences, including DeepSEA, DanQ, DeepATT and TBiNet. Ho...
CRISPR/Cas9 technology is capable of precisely editing genomes and is at the heart of various scientific and medical advances in recent times. The advances in biomedical research are hindered because of the inadvertent burden on the genome when genom...
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
37178007
Genomic prediction, which is based on solving linear mixed-model (LMM) equations, is the most popular method for predicting breeding values or phenotypic performance for economic traits in livestock. With the need to further improve the performance o...