AIMC Topic: Hyperuricemia

Clear Filters Showing 1 to 10 of 22 articles

Identification of age-specific risk factors for hyperuricemia: a machine learning-driven stratified analysis in health examination cohorts.

BMC medical informatics and decision making
BACKGROUND: Hyperuricemia (HUA) as a global public health challenge, although its overall epidemiological characteristics have been widely reported, its age-specific risk pattern remains controversial. This study aims to reveal the risk factors of HU...

Interpretive prediction of hyperuricemia and gout patients via machine learning analysis of human gut microbiome.

BMC microbiology
Hyperuricemia (HUA) and gout result from imbalances in uric acid metabolism and are closely associated with the gut microbiota. Advanced analytical methods facilitate the exploration of microbiota complexity. In this study, 16S rRNA sequencing data f...

Assessment of drug induced hyperuricemia and gout risk using the FDA adverse event reporting system.

Scientific reports
Hyperuricemia, the key pathological basis of gout, is increasingly prevalent worldwide. While lifestyle factors contribute, various medications also play a role. However, their specific risks and mechanisms remain inadequately studied. Disproportiona...

Effect of the exposure to brominated flame retardants on hyperuricemia using interpretable machine learning algorithms based on the SHAP methodology.

PloS one
BACKGROUND: Brominated flame retardants (BFRs) are classified as important endocrine disruptors and persistent organic pollutants; nevertheless, there is no comprehensive investigation to evaluate the association between BFRs and hyperuricemia, and t...

Tlalpan 2020 Case Study: Enhancing Uric Acid Level Prediction with Machine Learning Regression and Cross-Feature Selection.

Nutrients
Uric acid is a key metabolic byproduct of purine degradation and plays a dual role in human health. At physiological levels, it acts as an antioxidant, protecting against oxidative stress. However, excessive uric acid can lead to hyperuricemia, cont...

Machine learning-based prediction models for renal impairment in Chinese adults with hyperuricaemia: risk factor analysis.

Scientific reports
In hyperuricaemic populations, multiple factors may contribute to impaired renal function. This study aimed to establish a machine learning-based model to identify characteristic factors related to renal impairment in hyperuricaemic patients, determi...

Risk prediction of hyperuricemia based on particle swarm fusion machine learning solely dependent on routine blood tests.

BMC medical informatics and decision making
Hyperuricemia has seen a continuous increase in incidence and a trend towards younger patients in recent years, posing a serious threat to human health and highlighting the urgency of using technological means for disease risk prediction. Existing ri...

Development, validation and economic evaluation of a machine learning algorithm for predicting the probability of kidney damage in patients with hyperuricaemia: protocol for a retrospective study.

BMJ open
INTRODUCTION: Accurate identification of the risk factors is essential for the effective prevention of hyperuricaemia (HUA)-related kidney damage. Previous studies have established the efficacy of machine learning (ML) methodologies in predicting kid...

Metadata information and fundus image fusion neural network for hyperuricemia classification in diabetes.

Computer methods and programs in biomedicine
OBJECTIVE: In diabetes mellitus patients, hyperuricemia may lead to the development of diabetic complications, including macrovascular and microvascular dysfunction. However, the level of blood uric acid in diabetic patients is obtained by sampling p...

Multimodal Machine Learning-Based Marker Enables Early Detection and Prognosis Prediction for Hyperuricemia.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Hyperuricemia (HUA) has emerged as the second most prevalent metabolic disorder characterized by prolonged and asymptomatic period, triggering gout and metabolism-related outcomes. Early detection and prognosis prediction for HUA and gout are crucial...