Modeling Optical Coherence Tomography (OCT) images is crucial for numerous image processing applications and aids ophthalmologists in the early detection of macular abnormalities. Sparse representation-based models, particularly dictionary learning (...
OBJECTIVE: Differentiating between brain metastasis (BM) and glioblastoma (GBM) preoperatively is challenging due to their similar imaging features on conventional brain MRI. This study aimed to enhance diagnostic accuracy through a machine learning ...
BACKGROUND: Radiomic features and deep features are both vitally helpful for the accurate prediction of tumor information in breast ultrasound. However, whether integrating radiomic features and deep features can improve the prediction performance of...
American journal of physiology. Renal physiology
Dec 24, 2024
The presence of tubular casts within the kidney serves as an important feature when assessing the degree of renal injury. Quantification of renal tubular casts has been historically difficult due to varying cast morphologies, protein composition, and...
PURPOSE: To evaluate the feasibility of multiplexed sensitivity-encoding (MUSE) with deep learning-based reconstruction (DLR) for breast imaging in comparison with conventional diffusion-weighted imaging (DWI) and MUSE alone.
Dynamic contrast-enhanced (DCE) MRI is an important imaging tool for evaluating tumor vascularity that can lead to improved characterization of tumor extent and heterogeneity, and for early assessment of treatment response. However, clinical adoption...
OBJECTIVE: Breast ultrasound (BUS) is used to classify benign and malignant breast tumors, and its automatic classification can reduce subjectivity. However, current convolutional neural networks (CNNs) face challenges in capturing global features, w...
OBJECTIVES: To explore texture analysis' ability on T and T relaxation maps to classify liver fibrosis into no-to-mild liver fibrosis (nmF) versus severe fibrosis (sF) group using machine learning algorithms and histology as reference standard.
INTRODUCTION: Gadolinium-based T1-weighted MRI sequence is the gold standard for the detection of active multiple sclerosis (MS) lesions. The performance of machine learning (ML) and deep learning (DL) models in the classification of active and non-a...
Deep learning algorithms can extract meaningful diagnostic features from biomedical images, promising improved patient care in digital pathology. Vision Transformer (ViT) models capture long-range spatial relationships and offer robust prediction pow...